Non puoi selezionare più di 25 argomenti
Gli argomenti devono iniziare con una lettera o un numero, possono includere trattini ('-') e possono essere lunghi fino a 35 caratteri.
6566 righe
194 KiB
6566 righe
194 KiB
(function (global, factory) { |
|
typeof exports === 'object' && typeof module !== 'undefined' ? module.exports = factory() : |
|
typeof define === 'function' && define.amd ? define(factory) : |
|
(global.proj4 = factory()); |
|
}(this, (function () { 'use strict'; |
|
|
|
var globals = function(defs) { |
|
defs('EPSG:4326', "+title=WGS 84 (long/lat) +proj=longlat +ellps=WGS84 +datum=WGS84 +units=degrees"); |
|
defs('EPSG:4269', "+title=NAD83 (long/lat) +proj=longlat +a=6378137.0 +b=6356752.31414036 +ellps=GRS80 +datum=NAD83 +units=degrees"); |
|
defs('EPSG:3857', "+title=WGS 84 / Pseudo-Mercator +proj=merc +a=6378137 +b=6378137 +lat_ts=0.0 +lon_0=0.0 +x_0=0.0 +y_0=0 +k=1.0 +units=m +nadgrids=@null +no_defs"); |
|
|
|
defs.WGS84 = defs['EPSG:4326']; |
|
defs['EPSG:3785'] = defs['EPSG:3857']; // maintain backward compat, official code is 3857 |
|
defs.GOOGLE = defs['EPSG:3857']; |
|
defs['EPSG:900913'] = defs['EPSG:3857']; |
|
defs['EPSG:102113'] = defs['EPSG:3857']; |
|
}; |
|
|
|
var PJD_3PARAM = 1; |
|
var PJD_7PARAM = 2; |
|
var PJD_WGS84 = 4; // WGS84 or equivalent |
|
var PJD_NODATUM = 5; // WGS84 or equivalent |
|
var SEC_TO_RAD = 4.84813681109535993589914102357e-6; |
|
var HALF_PI = Math.PI/2; |
|
// ellipoid pj_set_ell.c |
|
var SIXTH = 0.1666666666666666667; |
|
/* 1/6 */ |
|
var RA4 = 0.04722222222222222222; |
|
/* 17/360 */ |
|
var RA6 = 0.02215608465608465608; |
|
var EPSLN = 1.0e-10; |
|
// you'd think you could use Number.EPSILON above but that makes |
|
// Mollweide get into an infinate loop. |
|
|
|
var D2R = 0.01745329251994329577; |
|
var R2D = 57.29577951308232088; |
|
var FORTPI = Math.PI/4; |
|
var TWO_PI = Math.PI * 2; |
|
// SPI is slightly greater than Math.PI, so values that exceed the -180..180 |
|
// degree range by a tiny amount don't get wrapped. This prevents points that |
|
// have drifted from their original location along the 180th meridian (due to |
|
// floating point error) from changing their sign. |
|
var SPI = 3.14159265359; |
|
|
|
var exports$1 = {}; |
|
exports$1.greenwich = 0.0; //"0dE", |
|
exports$1.lisbon = -9.131906111111; //"9d07'54.862\"W", |
|
exports$1.paris = 2.337229166667; //"2d20'14.025\"E", |
|
exports$1.bogota = -74.080916666667; //"74d04'51.3\"W", |
|
exports$1.madrid = -3.687938888889; //"3d41'16.58\"W", |
|
exports$1.rome = 12.452333333333; //"12d27'8.4\"E", |
|
exports$1.bern = 7.439583333333; //"7d26'22.5\"E", |
|
exports$1.jakarta = 106.807719444444; //"106d48'27.79\"E", |
|
exports$1.ferro = -17.666666666667; //"17d40'W", |
|
exports$1.brussels = 4.367975; //"4d22'4.71\"E", |
|
exports$1.stockholm = 18.058277777778; //"18d3'29.8\"E", |
|
exports$1.athens = 23.7163375; //"23d42'58.815\"E", |
|
exports$1.oslo = 10.722916666667; //"10d43'22.5\"E" |
|
|
|
var units = { |
|
ft: {to_meter: 0.3048}, |
|
'us-ft': {to_meter: 1200 / 3937} |
|
}; |
|
|
|
var ignoredChar = /[\s_\-\/\(\)]/g; |
|
function match(obj, key) { |
|
if (obj[key]) { |
|
return obj[key]; |
|
} |
|
var keys = Object.keys(obj); |
|
var lkey = key.toLowerCase().replace(ignoredChar, ''); |
|
var i = -1; |
|
var testkey, processedKey; |
|
while (++i < keys.length) { |
|
testkey = keys[i]; |
|
processedKey = testkey.toLowerCase().replace(ignoredChar, ''); |
|
if (processedKey === lkey) { |
|
return obj[testkey]; |
|
} |
|
} |
|
} |
|
|
|
var parseProj = function(defData) { |
|
var self = {}; |
|
var paramObj = defData.split('+').map(function(v) { |
|
return v.trim(); |
|
}).filter(function(a) { |
|
return a; |
|
}).reduce(function(p, a) { |
|
var split = a.split('='); |
|
split.push(true); |
|
p[split[0].toLowerCase()] = split[1]; |
|
return p; |
|
}, {}); |
|
var paramName, paramVal, paramOutname; |
|
var params = { |
|
proj: 'projName', |
|
datum: 'datumCode', |
|
rf: function(v) { |
|
self.rf = parseFloat(v); |
|
}, |
|
lat_0: function(v) { |
|
self.lat0 = v * D2R; |
|
}, |
|
lat_1: function(v) { |
|
self.lat1 = v * D2R; |
|
}, |
|
lat_2: function(v) { |
|
self.lat2 = v * D2R; |
|
}, |
|
lat_ts: function(v) { |
|
self.lat_ts = v * D2R; |
|
}, |
|
lon_0: function(v) { |
|
self.long0 = v * D2R; |
|
}, |
|
lon_1: function(v) { |
|
self.long1 = v * D2R; |
|
}, |
|
lon_2: function(v) { |
|
self.long2 = v * D2R; |
|
}, |
|
alpha: function(v) { |
|
self.alpha = parseFloat(v) * D2R; |
|
}, |
|
lonc: function(v) { |
|
self.longc = v * D2R; |
|
}, |
|
x_0: function(v) { |
|
self.x0 = parseFloat(v); |
|
}, |
|
y_0: function(v) { |
|
self.y0 = parseFloat(v); |
|
}, |
|
k_0: function(v) { |
|
self.k0 = parseFloat(v); |
|
}, |
|
k: function(v) { |
|
self.k0 = parseFloat(v); |
|
}, |
|
a: function(v) { |
|
self.a = parseFloat(v); |
|
}, |
|
b: function(v) { |
|
self.b = parseFloat(v); |
|
}, |
|
r_a: function() { |
|
self.R_A = true; |
|
}, |
|
zone: function(v) { |
|
self.zone = parseInt(v, 10); |
|
}, |
|
south: function() { |
|
self.utmSouth = true; |
|
}, |
|
towgs84: function(v) { |
|
self.datum_params = v.split(",").map(function(a) { |
|
return parseFloat(a); |
|
}); |
|
}, |
|
to_meter: function(v) { |
|
self.to_meter = parseFloat(v); |
|
}, |
|
units: function(v) { |
|
self.units = v; |
|
var unit = match(units, v); |
|
if (unit) { |
|
self.to_meter = unit.to_meter; |
|
} |
|
}, |
|
from_greenwich: function(v) { |
|
self.from_greenwich = v * D2R; |
|
}, |
|
pm: function(v) { |
|
var pm = match(exports$1, v); |
|
self.from_greenwich = (pm ? pm : parseFloat(v)) * D2R; |
|
}, |
|
nadgrids: function(v) { |
|
if (v === '@null') { |
|
self.datumCode = 'none'; |
|
} |
|
else { |
|
self.nadgrids = v; |
|
} |
|
}, |
|
axis: function(v) { |
|
var legalAxis = "ewnsud"; |
|
if (v.length === 3 && legalAxis.indexOf(v.substr(0, 1)) !== -1 && legalAxis.indexOf(v.substr(1, 1)) !== -1 && legalAxis.indexOf(v.substr(2, 1)) !== -1) { |
|
self.axis = v; |
|
} |
|
} |
|
}; |
|
for (paramName in paramObj) { |
|
paramVal = paramObj[paramName]; |
|
if (paramName in params) { |
|
paramOutname = params[paramName]; |
|
if (typeof paramOutname === 'function') { |
|
paramOutname(paramVal); |
|
} |
|
else { |
|
self[paramOutname] = paramVal; |
|
} |
|
} |
|
else { |
|
self[paramName] = paramVal; |
|
} |
|
} |
|
if(typeof self.datumCode === 'string' && self.datumCode !== "WGS84"){ |
|
self.datumCode = self.datumCode.toLowerCase(); |
|
} |
|
return self; |
|
}; |
|
|
|
var NEUTRAL = 1; |
|
var KEYWORD = 2; |
|
var NUMBER = 3; |
|
var QUOTED = 4; |
|
var AFTERQUOTE = 5; |
|
var ENDED = -1; |
|
var whitespace = /\s/; |
|
var latin = /[A-Za-z]/; |
|
var keyword = /[A-Za-z84]/; |
|
var endThings = /[,\]]/; |
|
var digets = /[\d\.E\-\+]/; |
|
// const ignoredChar = /[\s_\-\/\(\)]/g; |
|
function Parser(text) { |
|
if (typeof text !== 'string') { |
|
throw new Error('not a string'); |
|
} |
|
this.text = text.trim(); |
|
this.level = 0; |
|
this.place = 0; |
|
this.root = null; |
|
this.stack = []; |
|
this.currentObject = null; |
|
this.state = NEUTRAL; |
|
} |
|
Parser.prototype.readCharicter = function() { |
|
var char = this.text[this.place++]; |
|
if (this.state !== QUOTED) { |
|
while (whitespace.test(char)) { |
|
if (this.place >= this.text.length) { |
|
return; |
|
} |
|
char = this.text[this.place++]; |
|
} |
|
} |
|
switch (this.state) { |
|
case NEUTRAL: |
|
return this.neutral(char); |
|
case KEYWORD: |
|
return this.keyword(char) |
|
case QUOTED: |
|
return this.quoted(char); |
|
case AFTERQUOTE: |
|
return this.afterquote(char); |
|
case NUMBER: |
|
return this.number(char); |
|
case ENDED: |
|
return; |
|
} |
|
}; |
|
Parser.prototype.afterquote = function(char) { |
|
if (char === '"') { |
|
this.word += '"'; |
|
this.state = QUOTED; |
|
return; |
|
} |
|
if (endThings.test(char)) { |
|
this.word = this.word.trim(); |
|
this.afterItem(char); |
|
return; |
|
} |
|
throw new Error('havn\'t handled "' +char + '" in afterquote yet, index ' + this.place); |
|
}; |
|
Parser.prototype.afterItem = function(char) { |
|
if (char === ',') { |
|
if (this.word !== null) { |
|
this.currentObject.push(this.word); |
|
} |
|
this.word = null; |
|
this.state = NEUTRAL; |
|
return; |
|
} |
|
if (char === ']') { |
|
this.level--; |
|
if (this.word !== null) { |
|
this.currentObject.push(this.word); |
|
this.word = null; |
|
} |
|
this.state = NEUTRAL; |
|
this.currentObject = this.stack.pop(); |
|
if (!this.currentObject) { |
|
this.state = ENDED; |
|
} |
|
|
|
return; |
|
} |
|
}; |
|
Parser.prototype.number = function(char) { |
|
if (digets.test(char)) { |
|
this.word += char; |
|
return; |
|
} |
|
if (endThings.test(char)) { |
|
this.word = parseFloat(this.word); |
|
this.afterItem(char); |
|
return; |
|
} |
|
throw new Error('havn\'t handled "' +char + '" in number yet, index ' + this.place); |
|
}; |
|
Parser.prototype.quoted = function(char) { |
|
if (char === '"') { |
|
this.state = AFTERQUOTE; |
|
return; |
|
} |
|
this.word += char; |
|
return; |
|
}; |
|
Parser.prototype.keyword = function(char) { |
|
if (keyword.test(char)) { |
|
this.word += char; |
|
return; |
|
} |
|
if (char === '[') { |
|
var newObjects = []; |
|
newObjects.push(this.word); |
|
this.level++; |
|
if (this.root === null) { |
|
this.root = newObjects; |
|
} else { |
|
this.currentObject.push(newObjects); |
|
} |
|
this.stack.push(this.currentObject); |
|
this.currentObject = newObjects; |
|
this.state = NEUTRAL; |
|
return; |
|
} |
|
if (endThings.test(char)) { |
|
this.afterItem(char); |
|
return; |
|
} |
|
throw new Error('havn\'t handled "' +char + '" in keyword yet, index ' + this.place); |
|
}; |
|
Parser.prototype.neutral = function(char) { |
|
if (latin.test(char)) { |
|
this.word = char; |
|
this.state = KEYWORD; |
|
return; |
|
} |
|
if (char === '"') { |
|
this.word = ''; |
|
this.state = QUOTED; |
|
return; |
|
} |
|
if (digets.test(char)) { |
|
this.word = char; |
|
this.state = NUMBER; |
|
return; |
|
} |
|
if (endThings.test(char)) { |
|
this.afterItem(char); |
|
return; |
|
} |
|
throw new Error('havn\'t handled "' +char + '" in neutral yet, index ' + this.place); |
|
}; |
|
Parser.prototype.output = function() { |
|
while (this.place < this.text.length) { |
|
this.readCharicter(); |
|
} |
|
if (this.state === ENDED) { |
|
return this.root; |
|
} |
|
throw new Error('unable to parse string "' +this.text + '". State is ' + this.state); |
|
}; |
|
|
|
function parseString(txt) { |
|
var parser = new Parser(txt); |
|
return parser.output(); |
|
} |
|
|
|
function mapit(obj, key, value) { |
|
if (Array.isArray(key)) { |
|
value.unshift(key); |
|
key = null; |
|
} |
|
var thing = key ? {} : obj; |
|
|
|
var out = value.reduce(function(newObj, item) { |
|
sExpr(item, newObj); |
|
return newObj |
|
}, thing); |
|
if (key) { |
|
obj[key] = out; |
|
} |
|
} |
|
|
|
function sExpr(v, obj) { |
|
if (!Array.isArray(v)) { |
|
obj[v] = true; |
|
return; |
|
} |
|
var key = v.shift(); |
|
if (key === 'PARAMETER') { |
|
key = v.shift(); |
|
} |
|
if (v.length === 1) { |
|
if (Array.isArray(v[0])) { |
|
obj[key] = {}; |
|
sExpr(v[0], obj[key]); |
|
return; |
|
} |
|
obj[key] = v[0]; |
|
return; |
|
} |
|
if (!v.length) { |
|
obj[key] = true; |
|
return; |
|
} |
|
if (key === 'TOWGS84') { |
|
obj[key] = v; |
|
return; |
|
} |
|
if (!Array.isArray(key)) { |
|
obj[key] = {}; |
|
} |
|
|
|
var i; |
|
switch (key) { |
|
case 'UNIT': |
|
case 'PRIMEM': |
|
case 'VERT_DATUM': |
|
obj[key] = { |
|
name: v[0].toLowerCase(), |
|
convert: v[1] |
|
}; |
|
if (v.length === 3) { |
|
sExpr(v[2], obj[key]); |
|
} |
|
return; |
|
case 'SPHEROID': |
|
case 'ELLIPSOID': |
|
obj[key] = { |
|
name: v[0], |
|
a: v[1], |
|
rf: v[2] |
|
}; |
|
if (v.length === 4) { |
|
sExpr(v[3], obj[key]); |
|
} |
|
return; |
|
case 'PROJECTEDCRS': |
|
case 'PROJCRS': |
|
case 'GEOGCS': |
|
case 'GEOCCS': |
|
case 'PROJCS': |
|
case 'LOCAL_CS': |
|
case 'GEODCRS': |
|
case 'GEODETICCRS': |
|
case 'GEODETICDATUM': |
|
case 'EDATUM': |
|
case 'ENGINEERINGDATUM': |
|
case 'VERT_CS': |
|
case 'VERTCRS': |
|
case 'VERTICALCRS': |
|
case 'COMPD_CS': |
|
case 'COMPOUNDCRS': |
|
case 'ENGINEERINGCRS': |
|
case 'ENGCRS': |
|
case 'FITTED_CS': |
|
case 'LOCAL_DATUM': |
|
case 'DATUM': |
|
v[0] = ['name', v[0]]; |
|
mapit(obj, key, v); |
|
return; |
|
default: |
|
i = -1; |
|
while (++i < v.length) { |
|
if (!Array.isArray(v[i])) { |
|
return sExpr(v, obj[key]); |
|
} |
|
} |
|
return mapit(obj, key, v); |
|
} |
|
} |
|
|
|
var D2R$1 = 0.01745329251994329577; |
|
function rename(obj, params) { |
|
var outName = params[0]; |
|
var inName = params[1]; |
|
if (!(outName in obj) && (inName in obj)) { |
|
obj[outName] = obj[inName]; |
|
if (params.length === 3) { |
|
obj[outName] = params[2](obj[outName]); |
|
} |
|
} |
|
} |
|
|
|
function d2r(input) { |
|
return input * D2R$1; |
|
} |
|
|
|
function cleanWKT(wkt) { |
|
if (wkt.type === 'GEOGCS') { |
|
wkt.projName = 'longlat'; |
|
} else if (wkt.type === 'LOCAL_CS') { |
|
wkt.projName = 'identity'; |
|
wkt.local = true; |
|
} else { |
|
if (typeof wkt.PROJECTION === 'object') { |
|
wkt.projName = Object.keys(wkt.PROJECTION)[0]; |
|
} else { |
|
wkt.projName = wkt.PROJECTION; |
|
} |
|
} |
|
if (wkt.UNIT) { |
|
wkt.units = wkt.UNIT.name.toLowerCase(); |
|
if (wkt.units === 'metre') { |
|
wkt.units = 'meter'; |
|
} |
|
if (wkt.UNIT.convert) { |
|
if (wkt.type === 'GEOGCS') { |
|
if (wkt.DATUM && wkt.DATUM.SPHEROID) { |
|
wkt.to_meter = wkt.UNIT.convert*wkt.DATUM.SPHEROID.a; |
|
} |
|
} else { |
|
wkt.to_meter = wkt.UNIT.convert; |
|
} |
|
} |
|
} |
|
var geogcs = wkt.GEOGCS; |
|
if (wkt.type === 'GEOGCS') { |
|
geogcs = wkt; |
|
} |
|
if (geogcs) { |
|
//if(wkt.GEOGCS.PRIMEM&&wkt.GEOGCS.PRIMEM.convert){ |
|
// wkt.from_greenwich=wkt.GEOGCS.PRIMEM.convert*D2R; |
|
//} |
|
if (geogcs.DATUM) { |
|
wkt.datumCode = geogcs.DATUM.name.toLowerCase(); |
|
} else { |
|
wkt.datumCode = geogcs.name.toLowerCase(); |
|
} |
|
if (wkt.datumCode.slice(0, 2) === 'd_') { |
|
wkt.datumCode = wkt.datumCode.slice(2); |
|
} |
|
if (wkt.datumCode === 'new_zealand_geodetic_datum_1949' || wkt.datumCode === 'new_zealand_1949') { |
|
wkt.datumCode = 'nzgd49'; |
|
} |
|
if (wkt.datumCode === 'wgs_1984') { |
|
if (wkt.PROJECTION === 'Mercator_Auxiliary_Sphere') { |
|
wkt.sphere = true; |
|
} |
|
wkt.datumCode = 'wgs84'; |
|
} |
|
if (wkt.datumCode.slice(-6) === '_ferro') { |
|
wkt.datumCode = wkt.datumCode.slice(0, - 6); |
|
} |
|
if (wkt.datumCode.slice(-8) === '_jakarta') { |
|
wkt.datumCode = wkt.datumCode.slice(0, - 8); |
|
} |
|
if (~wkt.datumCode.indexOf('belge')) { |
|
wkt.datumCode = 'rnb72'; |
|
} |
|
if (geogcs.DATUM && geogcs.DATUM.SPHEROID) { |
|
wkt.ellps = geogcs.DATUM.SPHEROID.name.replace('_19', '').replace(/[Cc]larke\_18/, 'clrk'); |
|
if (wkt.ellps.toLowerCase().slice(0, 13) === 'international') { |
|
wkt.ellps = 'intl'; |
|
} |
|
|
|
wkt.a = geogcs.DATUM.SPHEROID.a; |
|
wkt.rf = parseFloat(geogcs.DATUM.SPHEROID.rf, 10); |
|
} |
|
|
|
if (geogcs.DATUM && geogcs.DATUM.TOWGS84) { |
|
wkt.datum_params = geogcs.DATUM.TOWGS84; |
|
} |
|
if (~wkt.datumCode.indexOf('osgb_1936')) { |
|
wkt.datumCode = 'osgb36'; |
|
} |
|
if (~wkt.datumCode.indexOf('osni_1952')) { |
|
wkt.datumCode = 'osni52'; |
|
} |
|
if (~wkt.datumCode.indexOf('tm65') |
|
|| ~wkt.datumCode.indexOf('geodetic_datum_of_1965')) { |
|
wkt.datumCode = 'ire65'; |
|
} |
|
if (wkt.datumCode === 'ch1903+') { |
|
wkt.datumCode = 'ch1903'; |
|
} |
|
if (~wkt.datumCode.indexOf('israel')) { |
|
wkt.datumCode = 'isr93'; |
|
} |
|
} |
|
if (wkt.b && !isFinite(wkt.b)) { |
|
wkt.b = wkt.a; |
|
} |
|
|
|
function toMeter(input) { |
|
var ratio = wkt.to_meter || 1; |
|
return input * ratio; |
|
} |
|
var renamer = function(a) { |
|
return rename(wkt, a); |
|
}; |
|
var list = [ |
|
['standard_parallel_1', 'Standard_Parallel_1'], |
|
['standard_parallel_2', 'Standard_Parallel_2'], |
|
['false_easting', 'False_Easting'], |
|
['false_northing', 'False_Northing'], |
|
['central_meridian', 'Central_Meridian'], |
|
['latitude_of_origin', 'Latitude_Of_Origin'], |
|
['latitude_of_origin', 'Central_Parallel'], |
|
['scale_factor', 'Scale_Factor'], |
|
['k0', 'scale_factor'], |
|
['latitude_of_center', 'Latitude_Of_Center'], |
|
['latitude_of_center', 'Latitude_of_center'], |
|
['lat0', 'latitude_of_center', d2r], |
|
['longitude_of_center', 'Longitude_Of_Center'], |
|
['longitude_of_center', 'Longitude_of_center'], |
|
['longc', 'longitude_of_center', d2r], |
|
['x0', 'false_easting', toMeter], |
|
['y0', 'false_northing', toMeter], |
|
['long0', 'central_meridian', d2r], |
|
['lat0', 'latitude_of_origin', d2r], |
|
['lat0', 'standard_parallel_1', d2r], |
|
['lat1', 'standard_parallel_1', d2r], |
|
['lat2', 'standard_parallel_2', d2r], |
|
['azimuth', 'Azimuth'], |
|
['alpha', 'azimuth', d2r], |
|
['srsCode', 'name'] |
|
]; |
|
list.forEach(renamer); |
|
if (!wkt.long0 && wkt.longc && (wkt.projName === 'Albers_Conic_Equal_Area' || wkt.projName === 'Lambert_Azimuthal_Equal_Area')) { |
|
wkt.long0 = wkt.longc; |
|
} |
|
if (!wkt.lat_ts && wkt.lat1 && (wkt.projName === 'Stereographic_South_Pole' || wkt.projName === 'Polar Stereographic (variant B)')) { |
|
wkt.lat0 = d2r(wkt.lat1 > 0 ? 90 : -90); |
|
wkt.lat_ts = wkt.lat1; |
|
} |
|
} |
|
var wkt = function(wkt) { |
|
var lisp = parseString(wkt); |
|
var type = lisp.shift(); |
|
var name = lisp.shift(); |
|
lisp.unshift(['name', name]); |
|
lisp.unshift(['type', type]); |
|
var obj = {}; |
|
sExpr(lisp, obj); |
|
cleanWKT(obj); |
|
return obj; |
|
}; |
|
|
|
function defs(name) { |
|
/*global console*/ |
|
var that = this; |
|
if (arguments.length === 2) { |
|
var def = arguments[1]; |
|
if (typeof def === 'string') { |
|
if (def.charAt(0) === '+') { |
|
defs[name] = parseProj(arguments[1]); |
|
} |
|
else { |
|
defs[name] = wkt(arguments[1]); |
|
} |
|
} else { |
|
defs[name] = def; |
|
} |
|
} |
|
else if (arguments.length === 1) { |
|
if (Array.isArray(name)) { |
|
return name.map(function(v) { |
|
if (Array.isArray(v)) { |
|
defs.apply(that, v); |
|
} |
|
else { |
|
defs(v); |
|
} |
|
}); |
|
} |
|
else if (typeof name === 'string') { |
|
if (name in defs) { |
|
return defs[name]; |
|
} |
|
} |
|
else if ('EPSG' in name) { |
|
defs['EPSG:' + name.EPSG] = name; |
|
} |
|
else if ('ESRI' in name) { |
|
defs['ESRI:' + name.ESRI] = name; |
|
} |
|
else if ('IAU2000' in name) { |
|
defs['IAU2000:' + name.IAU2000] = name; |
|
} |
|
else { |
|
console.log(name); |
|
} |
|
return; |
|
} |
|
|
|
|
|
} |
|
globals(defs); |
|
|
|
function testObj(code){ |
|
return typeof code === 'string'; |
|
} |
|
function testDef(code){ |
|
return code in defs; |
|
} |
|
var codeWords = ['PROJECTEDCRS', 'PROJCRS', 'GEOGCS','GEOCCS','PROJCS','LOCAL_CS', 'GEODCRS', 'GEODETICCRS', 'GEODETICDATUM', 'ENGCRS', 'ENGINEERINGCRS']; |
|
function testWKT(code){ |
|
return codeWords.some(function (word) { |
|
return code.indexOf(word) > -1; |
|
}); |
|
} |
|
var codes = ['3857', '900913', '3785', '102113']; |
|
function checkMercator(item) { |
|
var auth = match(item, 'authority'); |
|
if (!auth) { |
|
return; |
|
} |
|
var code = match(auth, 'epsg'); |
|
return code && codes.indexOf(code) > -1; |
|
} |
|
function checkProjStr(item) { |
|
var ext = match(item, 'extension'); |
|
if (!ext) { |
|
return; |
|
} |
|
return match(ext, 'proj4'); |
|
} |
|
function testProj(code){ |
|
return code[0] === '+'; |
|
} |
|
function parse(code){ |
|
if (testObj(code)) { |
|
//check to see if this is a WKT string |
|
if (testDef(code)) { |
|
return defs[code]; |
|
} |
|
if (testWKT(code)) { |
|
var out = wkt(code); |
|
// test of spetial case, due to this being a very common and often malformed |
|
if (checkMercator(out)) { |
|
return defs['EPSG:3857']; |
|
} |
|
var maybeProjStr = checkProjStr(out); |
|
if (maybeProjStr) { |
|
return parseProj(maybeProjStr); |
|
} |
|
return out; |
|
} |
|
if (testProj(code)) { |
|
return parseProj(code); |
|
} |
|
}else{ |
|
return code; |
|
} |
|
} |
|
|
|
var extend = function(destination, source) { |
|
destination = destination || {}; |
|
var value, property; |
|
if (!source) { |
|
return destination; |
|
} |
|
for (property in source) { |
|
value = source[property]; |
|
if (value !== undefined) { |
|
destination[property] = value; |
|
} |
|
} |
|
return destination; |
|
}; |
|
|
|
var msfnz = function(eccent, sinphi, cosphi) { |
|
var con = eccent * sinphi; |
|
return cosphi / (Math.sqrt(1 - con * con)); |
|
}; |
|
|
|
var sign = function(x) { |
|
return x<0 ? -1 : 1; |
|
}; |
|
|
|
var adjust_lon = function(x) { |
|
return (Math.abs(x) <= SPI) ? x : (x - (sign(x) * TWO_PI)); |
|
}; |
|
|
|
var tsfnz = function(eccent, phi, sinphi) { |
|
var con = eccent * sinphi; |
|
var com = 0.5 * eccent; |
|
con = Math.pow(((1 - con) / (1 + con)), com); |
|
return (Math.tan(0.5 * (HALF_PI - phi)) / con); |
|
}; |
|
|
|
var phi2z = function(eccent, ts) { |
|
var eccnth = 0.5 * eccent; |
|
var con, dphi; |
|
var phi = HALF_PI - 2 * Math.atan(ts); |
|
for (var i = 0; i <= 15; i++) { |
|
con = eccent * Math.sin(phi); |
|
dphi = HALF_PI - 2 * Math.atan(ts * (Math.pow(((1 - con) / (1 + con)), eccnth))) - phi; |
|
phi += dphi; |
|
if (Math.abs(dphi) <= 0.0000000001) { |
|
return phi; |
|
} |
|
} |
|
//console.log("phi2z has NoConvergence"); |
|
return -9999; |
|
}; |
|
|
|
function init() { |
|
var con = this.b / this.a; |
|
this.es = 1 - con * con; |
|
if(!('x0' in this)){ |
|
this.x0 = 0; |
|
} |
|
if(!('y0' in this)){ |
|
this.y0 = 0; |
|
} |
|
this.e = Math.sqrt(this.es); |
|
if (this.lat_ts) { |
|
if (this.sphere) { |
|
this.k0 = Math.cos(this.lat_ts); |
|
} |
|
else { |
|
this.k0 = msfnz(this.e, Math.sin(this.lat_ts), Math.cos(this.lat_ts)); |
|
} |
|
} |
|
else { |
|
if (!this.k0) { |
|
if (this.k) { |
|
this.k0 = this.k; |
|
} |
|
else { |
|
this.k0 = 1; |
|
} |
|
} |
|
} |
|
} |
|
|
|
/* Mercator forward equations--mapping lat,long to x,y |
|
--------------------------------------------------*/ |
|
|
|
function forward(p) { |
|
var lon = p.x; |
|
var lat = p.y; |
|
// convert to radians |
|
if (lat * R2D > 90 && lat * R2D < -90 && lon * R2D > 180 && lon * R2D < -180) { |
|
return null; |
|
} |
|
|
|
var x, y; |
|
if (Math.abs(Math.abs(lat) - HALF_PI) <= EPSLN) { |
|
return null; |
|
} |
|
else { |
|
if (this.sphere) { |
|
x = this.x0 + this.a * this.k0 * adjust_lon(lon - this.long0); |
|
y = this.y0 + this.a * this.k0 * Math.log(Math.tan(FORTPI + 0.5 * lat)); |
|
} |
|
else { |
|
var sinphi = Math.sin(lat); |
|
var ts = tsfnz(this.e, lat, sinphi); |
|
x = this.x0 + this.a * this.k0 * adjust_lon(lon - this.long0); |
|
y = this.y0 - this.a * this.k0 * Math.log(ts); |
|
} |
|
p.x = x; |
|
p.y = y; |
|
return p; |
|
} |
|
} |
|
|
|
/* Mercator inverse equations--mapping x,y to lat/long |
|
--------------------------------------------------*/ |
|
function inverse(p) { |
|
|
|
var x = p.x - this.x0; |
|
var y = p.y - this.y0; |
|
var lon, lat; |
|
|
|
if (this.sphere) { |
|
lat = HALF_PI - 2 * Math.atan(Math.exp(-y / (this.a * this.k0))); |
|
} |
|
else { |
|
var ts = Math.exp(-y / (this.a * this.k0)); |
|
lat = phi2z(this.e, ts); |
|
if (lat === -9999) { |
|
return null; |
|
} |
|
} |
|
lon = adjust_lon(this.long0 + x / (this.a * this.k0)); |
|
|
|
p.x = lon; |
|
p.y = lat; |
|
return p; |
|
} |
|
|
|
var names$1 = ["Mercator", "Popular Visualisation Pseudo Mercator", "Mercator_1SP", "Mercator_Auxiliary_Sphere", "merc"]; |
|
var merc = { |
|
init: init, |
|
forward: forward, |
|
inverse: inverse, |
|
names: names$1 |
|
}; |
|
|
|
function init$1() { |
|
//no-op for longlat |
|
} |
|
|
|
function identity(pt) { |
|
return pt; |
|
} |
|
var names$2 = ["longlat", "identity"]; |
|
var longlat = { |
|
init: init$1, |
|
forward: identity, |
|
inverse: identity, |
|
names: names$2 |
|
}; |
|
|
|
var projs = [merc, longlat]; |
|
var names = {}; |
|
var projStore = []; |
|
|
|
function add(proj, i) { |
|
var len = projStore.length; |
|
if (!proj.names) { |
|
console.log(i); |
|
return true; |
|
} |
|
projStore[len] = proj; |
|
proj.names.forEach(function(n) { |
|
names[n.toLowerCase()] = len; |
|
}); |
|
return this; |
|
} |
|
|
|
function get(name) { |
|
if (!name) { |
|
return false; |
|
} |
|
var n = name.toLowerCase(); |
|
if (typeof names[n] !== 'undefined' && projStore[names[n]]) { |
|
return projStore[names[n]]; |
|
} |
|
} |
|
|
|
function start() { |
|
projs.forEach(add); |
|
} |
|
var projections = { |
|
start: start, |
|
add: add, |
|
get: get |
|
}; |
|
|
|
var exports$2 = {}; |
|
exports$2.MERIT = { |
|
a: 6378137.0, |
|
rf: 298.257, |
|
ellipseName: "MERIT 1983" |
|
}; |
|
|
|
exports$2.SGS85 = { |
|
a: 6378136.0, |
|
rf: 298.257, |
|
ellipseName: "Soviet Geodetic System 85" |
|
}; |
|
|
|
exports$2.GRS80 = { |
|
a: 6378137.0, |
|
rf: 298.257222101, |
|
ellipseName: "GRS 1980(IUGG, 1980)" |
|
}; |
|
|
|
exports$2.IAU76 = { |
|
a: 6378140.0, |
|
rf: 298.257, |
|
ellipseName: "IAU 1976" |
|
}; |
|
|
|
exports$2.airy = { |
|
a: 6377563.396, |
|
b: 6356256.910, |
|
ellipseName: "Airy 1830" |
|
}; |
|
|
|
exports$2.APL4 = { |
|
a: 6378137, |
|
rf: 298.25, |
|
ellipseName: "Appl. Physics. 1965" |
|
}; |
|
|
|
exports$2.NWL9D = { |
|
a: 6378145.0, |
|
rf: 298.25, |
|
ellipseName: "Naval Weapons Lab., 1965" |
|
}; |
|
|
|
exports$2.mod_airy = { |
|
a: 6377340.189, |
|
b: 6356034.446, |
|
ellipseName: "Modified Airy" |
|
}; |
|
|
|
exports$2.andrae = { |
|
a: 6377104.43, |
|
rf: 300.0, |
|
ellipseName: "Andrae 1876 (Den., Iclnd.)" |
|
}; |
|
|
|
exports$2.aust_SA = { |
|
a: 6378160.0, |
|
rf: 298.25, |
|
ellipseName: "Australian Natl & S. Amer. 1969" |
|
}; |
|
|
|
exports$2.GRS67 = { |
|
a: 6378160.0, |
|
rf: 298.2471674270, |
|
ellipseName: "GRS 67(IUGG 1967)" |
|
}; |
|
|
|
exports$2.bessel = { |
|
a: 6377397.155, |
|
rf: 299.1528128, |
|
ellipseName: "Bessel 1841" |
|
}; |
|
|
|
exports$2.bess_nam = { |
|
a: 6377483.865, |
|
rf: 299.1528128, |
|
ellipseName: "Bessel 1841 (Namibia)" |
|
}; |
|
|
|
exports$2.clrk66 = { |
|
a: 6378206.4, |
|
b: 6356583.8, |
|
ellipseName: "Clarke 1866" |
|
}; |
|
|
|
exports$2.clrk80 = { |
|
a: 6378249.145, |
|
rf: 293.4663, |
|
ellipseName: "Clarke 1880 mod." |
|
}; |
|
|
|
exports$2.clrk58 = { |
|
a: 6378293.645208759, |
|
rf: 294.2606763692654, |
|
ellipseName: "Clarke 1858" |
|
}; |
|
|
|
exports$2.CPM = { |
|
a: 6375738.7, |
|
rf: 334.29, |
|
ellipseName: "Comm. des Poids et Mesures 1799" |
|
}; |
|
|
|
exports$2.delmbr = { |
|
a: 6376428.0, |
|
rf: 311.5, |
|
ellipseName: "Delambre 1810 (Belgium)" |
|
}; |
|
|
|
exports$2.engelis = { |
|
a: 6378136.05, |
|
rf: 298.2566, |
|
ellipseName: "Engelis 1985" |
|
}; |
|
|
|
exports$2.evrst30 = { |
|
a: 6377276.345, |
|
rf: 300.8017, |
|
ellipseName: "Everest 1830" |
|
}; |
|
|
|
exports$2.evrst48 = { |
|
a: 6377304.063, |
|
rf: 300.8017, |
|
ellipseName: "Everest 1948" |
|
}; |
|
|
|
exports$2.evrst56 = { |
|
a: 6377301.243, |
|
rf: 300.8017, |
|
ellipseName: "Everest 1956" |
|
}; |
|
|
|
exports$2.evrst69 = { |
|
a: 6377295.664, |
|
rf: 300.8017, |
|
ellipseName: "Everest 1969" |
|
}; |
|
|
|
exports$2.evrstSS = { |
|
a: 6377298.556, |
|
rf: 300.8017, |
|
ellipseName: "Everest (Sabah & Sarawak)" |
|
}; |
|
|
|
exports$2.fschr60 = { |
|
a: 6378166.0, |
|
rf: 298.3, |
|
ellipseName: "Fischer (Mercury Datum) 1960" |
|
}; |
|
|
|
exports$2.fschr60m = { |
|
a: 6378155.0, |
|
rf: 298.3, |
|
ellipseName: "Fischer 1960" |
|
}; |
|
|
|
exports$2.fschr68 = { |
|
a: 6378150.0, |
|
rf: 298.3, |
|
ellipseName: "Fischer 1968" |
|
}; |
|
|
|
exports$2.helmert = { |
|
a: 6378200.0, |
|
rf: 298.3, |
|
ellipseName: "Helmert 1906" |
|
}; |
|
|
|
exports$2.hough = { |
|
a: 6378270.0, |
|
rf: 297.0, |
|
ellipseName: "Hough" |
|
}; |
|
|
|
exports$2.intl = { |
|
a: 6378388.0, |
|
rf: 297.0, |
|
ellipseName: "International 1909 (Hayford)" |
|
}; |
|
|
|
exports$2.kaula = { |
|
a: 6378163.0, |
|
rf: 298.24, |
|
ellipseName: "Kaula 1961" |
|
}; |
|
|
|
exports$2.lerch = { |
|
a: 6378139.0, |
|
rf: 298.257, |
|
ellipseName: "Lerch 1979" |
|
}; |
|
|
|
exports$2.mprts = { |
|
a: 6397300.0, |
|
rf: 191.0, |
|
ellipseName: "Maupertius 1738" |
|
}; |
|
|
|
exports$2.new_intl = { |
|
a: 6378157.5, |
|
b: 6356772.2, |
|
ellipseName: "New International 1967" |
|
}; |
|
|
|
exports$2.plessis = { |
|
a: 6376523.0, |
|
rf: 6355863.0, |
|
ellipseName: "Plessis 1817 (France)" |
|
}; |
|
|
|
exports$2.krass = { |
|
a: 6378245.0, |
|
rf: 298.3, |
|
ellipseName: "Krassovsky, 1942" |
|
}; |
|
|
|
exports$2.SEasia = { |
|
a: 6378155.0, |
|
b: 6356773.3205, |
|
ellipseName: "Southeast Asia" |
|
}; |
|
|
|
exports$2.walbeck = { |
|
a: 6376896.0, |
|
b: 6355834.8467, |
|
ellipseName: "Walbeck" |
|
}; |
|
|
|
exports$2.WGS60 = { |
|
a: 6378165.0, |
|
rf: 298.3, |
|
ellipseName: "WGS 60" |
|
}; |
|
|
|
exports$2.WGS66 = { |
|
a: 6378145.0, |
|
rf: 298.25, |
|
ellipseName: "WGS 66" |
|
}; |
|
|
|
exports$2.WGS7 = { |
|
a: 6378135.0, |
|
rf: 298.26, |
|
ellipseName: "WGS 72" |
|
}; |
|
|
|
var WGS84 = exports$2.WGS84 = { |
|
a: 6378137.0, |
|
rf: 298.257223563, |
|
ellipseName: "WGS 84" |
|
}; |
|
|
|
exports$2.sphere = { |
|
a: 6370997.0, |
|
b: 6370997.0, |
|
ellipseName: "Normal Sphere (r=6370997)" |
|
}; |
|
|
|
function eccentricity(a, b, rf, R_A) { |
|
var a2 = a * a; // used in geocentric |
|
var b2 = b * b; // used in geocentric |
|
var es = (a2 - b2) / a2; // e ^ 2 |
|
var e = 0; |
|
if (R_A) { |
|
a *= 1 - es * (SIXTH + es * (RA4 + es * RA6)); |
|
a2 = a * a; |
|
es = 0; |
|
} else { |
|
e = Math.sqrt(es); // eccentricity |
|
} |
|
var ep2 = (a2 - b2) / b2; // used in geocentric |
|
return { |
|
es: es, |
|
e: e, |
|
ep2: ep2 |
|
}; |
|
} |
|
function sphere(a, b, rf, ellps, sphere) { |
|
if (!a) { // do we have an ellipsoid? |
|
var ellipse = match(exports$2, ellps); |
|
if (!ellipse) { |
|
ellipse = WGS84; |
|
} |
|
a = ellipse.a; |
|
b = ellipse.b; |
|
rf = ellipse.rf; |
|
} |
|
|
|
if (rf && !b) { |
|
b = (1.0 - 1.0 / rf) * a; |
|
} |
|
if (rf === 0 || Math.abs(a - b) < EPSLN) { |
|
sphere = true; |
|
b = a; |
|
} |
|
return { |
|
a: a, |
|
b: b, |
|
rf: rf, |
|
sphere: sphere |
|
}; |
|
} |
|
|
|
var exports$3 = {}; |
|
exports$3.wgs84 = { |
|
towgs84: "0,0,0", |
|
ellipse: "WGS84", |
|
datumName: "WGS84" |
|
}; |
|
|
|
exports$3.ch1903 = { |
|
towgs84: "674.374,15.056,405.346", |
|
ellipse: "bessel", |
|
datumName: "swiss" |
|
}; |
|
|
|
exports$3.ggrs87 = { |
|
towgs84: "-199.87,74.79,246.62", |
|
ellipse: "GRS80", |
|
datumName: "Greek_Geodetic_Reference_System_1987" |
|
}; |
|
|
|
exports$3.nad83 = { |
|
towgs84: "0,0,0", |
|
ellipse: "GRS80", |
|
datumName: "North_American_Datum_1983" |
|
}; |
|
|
|
exports$3.nad27 = { |
|
nadgrids: "@conus,@alaska,@ntv2_0.gsb,@ntv1_can.dat", |
|
ellipse: "clrk66", |
|
datumName: "North_American_Datum_1927" |
|
}; |
|
|
|
exports$3.potsdam = { |
|
towgs84: "606.0,23.0,413.0", |
|
ellipse: "bessel", |
|
datumName: "Potsdam Rauenberg 1950 DHDN" |
|
}; |
|
|
|
exports$3.carthage = { |
|
towgs84: "-263.0,6.0,431.0", |
|
ellipse: "clark80", |
|
datumName: "Carthage 1934 Tunisia" |
|
}; |
|
|
|
exports$3.hermannskogel = { |
|
towgs84: "653.0,-212.0,449.0", |
|
ellipse: "bessel", |
|
datumName: "Hermannskogel" |
|
}; |
|
|
|
exports$3.osni52 = { |
|
towgs84: "482.530,-130.596,564.557,-1.042,-0.214,-0.631,8.15", |
|
ellipse: "airy", |
|
datumName: "Irish National" |
|
}; |
|
|
|
exports$3.ire65 = { |
|
towgs84: "482.530,-130.596,564.557,-1.042,-0.214,-0.631,8.15", |
|
ellipse: "mod_airy", |
|
datumName: "Ireland 1965" |
|
}; |
|
|
|
exports$3.rassadiran = { |
|
towgs84: "-133.63,-157.5,-158.62", |
|
ellipse: "intl", |
|
datumName: "Rassadiran" |
|
}; |
|
|
|
exports$3.nzgd49 = { |
|
towgs84: "59.47,-5.04,187.44,0.47,-0.1,1.024,-4.5993", |
|
ellipse: "intl", |
|
datumName: "New Zealand Geodetic Datum 1949" |
|
}; |
|
|
|
exports$3.osgb36 = { |
|
towgs84: "446.448,-125.157,542.060,0.1502,0.2470,0.8421,-20.4894", |
|
ellipse: "airy", |
|
datumName: "Airy 1830" |
|
}; |
|
|
|
exports$3.s_jtsk = { |
|
towgs84: "589,76,480", |
|
ellipse: 'bessel', |
|
datumName: 'S-JTSK (Ferro)' |
|
}; |
|
|
|
exports$3.beduaram = { |
|
towgs84: '-106,-87,188', |
|
ellipse: 'clrk80', |
|
datumName: 'Beduaram' |
|
}; |
|
|
|
exports$3.gunung_segara = { |
|
towgs84: '-403,684,41', |
|
ellipse: 'bessel', |
|
datumName: 'Gunung Segara Jakarta' |
|
}; |
|
|
|
exports$3.rnb72 = { |
|
towgs84: "106.869,-52.2978,103.724,-0.33657,0.456955,-1.84218,1", |
|
ellipse: "intl", |
|
datumName: "Reseau National Belge 1972" |
|
}; |
|
|
|
function datum(datumCode, datum_params, a, b, es, ep2) { |
|
var out = {}; |
|
|
|
if (datumCode === undefined || datumCode === 'none') { |
|
out.datum_type = PJD_NODATUM; |
|
} else { |
|
out.datum_type = PJD_WGS84; |
|
} |
|
|
|
if (datum_params) { |
|
out.datum_params = datum_params.map(parseFloat); |
|
if (out.datum_params[0] !== 0 || out.datum_params[1] !== 0 || out.datum_params[2] !== 0) { |
|
out.datum_type = PJD_3PARAM; |
|
} |
|
if (out.datum_params.length > 3) { |
|
if (out.datum_params[3] !== 0 || out.datum_params[4] !== 0 || out.datum_params[5] !== 0 || out.datum_params[6] !== 0) { |
|
out.datum_type = PJD_7PARAM; |
|
out.datum_params[3] *= SEC_TO_RAD; |
|
out.datum_params[4] *= SEC_TO_RAD; |
|
out.datum_params[5] *= SEC_TO_RAD; |
|
out.datum_params[6] = (out.datum_params[6] / 1000000.0) + 1.0; |
|
} |
|
} |
|
} |
|
|
|
out.a = a; //datum object also uses these values |
|
out.b = b; |
|
out.es = es; |
|
out.ep2 = ep2; |
|
return out; |
|
} |
|
|
|
function Projection(srsCode,callback) { |
|
if (!(this instanceof Projection)) { |
|
return new Projection(srsCode); |
|
} |
|
callback = callback || function(error){ |
|
if(error){ |
|
throw error; |
|
} |
|
}; |
|
var json = parse(srsCode); |
|
if(typeof json !== 'object'){ |
|
callback(srsCode); |
|
return; |
|
} |
|
var ourProj = Projection.projections.get(json.projName); |
|
if(!ourProj){ |
|
callback(srsCode); |
|
return; |
|
} |
|
if (json.datumCode && json.datumCode !== 'none') { |
|
var datumDef = match(exports$3, json.datumCode); |
|
if (datumDef) { |
|
json.datum_params = datumDef.towgs84 ? datumDef.towgs84.split(',') : null; |
|
json.ellps = datumDef.ellipse; |
|
json.datumName = datumDef.datumName ? datumDef.datumName : json.datumCode; |
|
} |
|
} |
|
json.k0 = json.k0 || 1.0; |
|
json.axis = json.axis || 'enu'; |
|
json.ellps = json.ellps || 'wgs84'; |
|
var sphere_ = sphere(json.a, json.b, json.rf, json.ellps, json.sphere); |
|
var ecc = eccentricity(sphere_.a, sphere_.b, sphere_.rf, json.R_A); |
|
var datumObj = json.datum || datum(json.datumCode, json.datum_params, sphere_.a, sphere_.b, ecc.es, ecc.ep2); |
|
|
|
extend(this, json); // transfer everything over from the projection because we don't know what we'll need |
|
extend(this, ourProj); // transfer all the methods from the projection |
|
|
|
// copy the 4 things over we calulated in deriveConstants.sphere |
|
this.a = sphere_.a; |
|
this.b = sphere_.b; |
|
this.rf = sphere_.rf; |
|
this.sphere = sphere_.sphere; |
|
|
|
// copy the 3 things we calculated in deriveConstants.eccentricity |
|
this.es = ecc.es; |
|
this.e = ecc.e; |
|
this.ep2 = ecc.ep2; |
|
|
|
// add in the datum object |
|
this.datum = datumObj; |
|
|
|
// init the projection |
|
this.init(); |
|
|
|
// legecy callback from back in the day when it went to spatialreference.org |
|
callback(null, this); |
|
|
|
} |
|
Projection.projections = projections; |
|
Projection.projections.start(); |
|
|
|
'use strict'; |
|
function compareDatums(source, dest) { |
|
if (source.datum_type !== dest.datum_type) { |
|
return false; // false, datums are not equal |
|
} else if (source.a !== dest.a || Math.abs(source.es - dest.es) > 0.000000000050) { |
|
// the tolerance for es is to ensure that GRS80 and WGS84 |
|
// are considered identical |
|
return false; |
|
} else if (source.datum_type === PJD_3PARAM) { |
|
return (source.datum_params[0] === dest.datum_params[0] && source.datum_params[1] === dest.datum_params[1] && source.datum_params[2] === dest.datum_params[2]); |
|
} else if (source.datum_type === PJD_7PARAM) { |
|
return (source.datum_params[0] === dest.datum_params[0] && source.datum_params[1] === dest.datum_params[1] && source.datum_params[2] === dest.datum_params[2] && source.datum_params[3] === dest.datum_params[3] && source.datum_params[4] === dest.datum_params[4] && source.datum_params[5] === dest.datum_params[5] && source.datum_params[6] === dest.datum_params[6]); |
|
} else { |
|
return true; // datums are equal |
|
} |
|
} // cs_compare_datums() |
|
|
|
/* |
|
* The function Convert_Geodetic_To_Geocentric converts geodetic coordinates |
|
* (latitude, longitude, and height) to geocentric coordinates (X, Y, Z), |
|
* according to the current ellipsoid parameters. |
|
* |
|
* Latitude : Geodetic latitude in radians (input) |
|
* Longitude : Geodetic longitude in radians (input) |
|
* Height : Geodetic height, in meters (input) |
|
* X : Calculated Geocentric X coordinate, in meters (output) |
|
* Y : Calculated Geocentric Y coordinate, in meters (output) |
|
* Z : Calculated Geocentric Z coordinate, in meters (output) |
|
* |
|
*/ |
|
function geodeticToGeocentric(p, es, a) { |
|
var Longitude = p.x; |
|
var Latitude = p.y; |
|
var Height = p.z ? p.z : 0; //Z value not always supplied |
|
|
|
var Rn; /* Earth radius at location */ |
|
var Sin_Lat; /* Math.sin(Latitude) */ |
|
var Sin2_Lat; /* Square of Math.sin(Latitude) */ |
|
var Cos_Lat; /* Math.cos(Latitude) */ |
|
|
|
/* |
|
** Don't blow up if Latitude is just a little out of the value |
|
** range as it may just be a rounding issue. Also removed longitude |
|
** test, it should be wrapped by Math.cos() and Math.sin(). NFW for PROJ.4, Sep/2001. |
|
*/ |
|
if (Latitude < -HALF_PI && Latitude > -1.001 * HALF_PI) { |
|
Latitude = -HALF_PI; |
|
} else if (Latitude > HALF_PI && Latitude < 1.001 * HALF_PI) { |
|
Latitude = HALF_PI; |
|
} else if (Latitude < -HALF_PI) { |
|
/* Latitude out of range */ |
|
//..reportError('geocent:lat out of range:' + Latitude); |
|
return { x: -Infinity, y: -Infinity, z: p.z }; |
|
} else if (Latitude > HALF_PI) { |
|
/* Latitude out of range */ |
|
return { x: Infinity, y: Infinity, z: p.z }; |
|
} |
|
|
|
if (Longitude > Math.PI) { |
|
Longitude -= (2 * Math.PI); |
|
} |
|
Sin_Lat = Math.sin(Latitude); |
|
Cos_Lat = Math.cos(Latitude); |
|
Sin2_Lat = Sin_Lat * Sin_Lat; |
|
Rn = a / (Math.sqrt(1.0e0 - es * Sin2_Lat)); |
|
return { |
|
x: (Rn + Height) * Cos_Lat * Math.cos(Longitude), |
|
y: (Rn + Height) * Cos_Lat * Math.sin(Longitude), |
|
z: ((Rn * (1 - es)) + Height) * Sin_Lat |
|
}; |
|
} // cs_geodetic_to_geocentric() |
|
|
|
function geocentricToGeodetic(p, es, a, b) { |
|
/* local defintions and variables */ |
|
/* end-criterium of loop, accuracy of sin(Latitude) */ |
|
var genau = 1e-12; |
|
var genau2 = (genau * genau); |
|
var maxiter = 30; |
|
|
|
var P; /* distance between semi-minor axis and location */ |
|
var RR; /* distance between center and location */ |
|
var CT; /* sin of geocentric latitude */ |
|
var ST; /* cos of geocentric latitude */ |
|
var RX; |
|
var RK; |
|
var RN; /* Earth radius at location */ |
|
var CPHI0; /* cos of start or old geodetic latitude in iterations */ |
|
var SPHI0; /* sin of start or old geodetic latitude in iterations */ |
|
var CPHI; /* cos of searched geodetic latitude */ |
|
var SPHI; /* sin of searched geodetic latitude */ |
|
var SDPHI; /* end-criterium: addition-theorem of sin(Latitude(iter)-Latitude(iter-1)) */ |
|
var iter; /* # of continous iteration, max. 30 is always enough (s.a.) */ |
|
|
|
var X = p.x; |
|
var Y = p.y; |
|
var Z = p.z ? p.z : 0.0; //Z value not always supplied |
|
var Longitude; |
|
var Latitude; |
|
var Height; |
|
|
|
P = Math.sqrt(X * X + Y * Y); |
|
RR = Math.sqrt(X * X + Y * Y + Z * Z); |
|
|
|
/* special cases for latitude and longitude */ |
|
if (P / a < genau) { |
|
|
|
/* special case, if P=0. (X=0., Y=0.) */ |
|
Longitude = 0.0; |
|
|
|
/* if (X,Y,Z)=(0.,0.,0.) then Height becomes semi-minor axis |
|
* of ellipsoid (=center of mass), Latitude becomes PI/2 */ |
|
if (RR / a < genau) { |
|
Latitude = HALF_PI; |
|
Height = -b; |
|
return { |
|
x: p.x, |
|
y: p.y, |
|
z: p.z |
|
}; |
|
} |
|
} else { |
|
/* ellipsoidal (geodetic) longitude |
|
* interval: -PI < Longitude <= +PI */ |
|
Longitude = Math.atan2(Y, X); |
|
} |
|
|
|
/* -------------------------------------------------------------- |
|
* Following iterative algorithm was developped by |
|
* "Institut for Erdmessung", University of Hannover, July 1988. |
|
* Internet: www.ife.uni-hannover.de |
|
* Iterative computation of CPHI,SPHI and Height. |
|
* Iteration of CPHI and SPHI to 10**-12 radian resp. |
|
* 2*10**-7 arcsec. |
|
* -------------------------------------------------------------- |
|
*/ |
|
CT = Z / RR; |
|
ST = P / RR; |
|
RX = 1.0 / Math.sqrt(1.0 - es * (2.0 - es) * ST * ST); |
|
CPHI0 = ST * (1.0 - es) * RX; |
|
SPHI0 = CT * RX; |
|
iter = 0; |
|
|
|
/* loop to find sin(Latitude) resp. Latitude |
|
* until |sin(Latitude(iter)-Latitude(iter-1))| < genau */ |
|
do { |
|
iter++; |
|
RN = a / Math.sqrt(1.0 - es * SPHI0 * SPHI0); |
|
|
|
/* ellipsoidal (geodetic) height */ |
|
Height = P * CPHI0 + Z * SPHI0 - RN * (1.0 - es * SPHI0 * SPHI0); |
|
|
|
RK = es * RN / (RN + Height); |
|
RX = 1.0 / Math.sqrt(1.0 - RK * (2.0 - RK) * ST * ST); |
|
CPHI = ST * (1.0 - RK) * RX; |
|
SPHI = CT * RX; |
|
SDPHI = SPHI * CPHI0 - CPHI * SPHI0; |
|
CPHI0 = CPHI; |
|
SPHI0 = SPHI; |
|
} |
|
while (SDPHI * SDPHI > genau2 && iter < maxiter); |
|
|
|
/* ellipsoidal (geodetic) latitude */ |
|
Latitude = Math.atan(SPHI / Math.abs(CPHI)); |
|
return { |
|
x: Longitude, |
|
y: Latitude, |
|
z: Height |
|
}; |
|
} // cs_geocentric_to_geodetic() |
|
|
|
/****************************************************************/ |
|
// pj_geocentic_to_wgs84( p ) |
|
// p = point to transform in geocentric coordinates (x,y,z) |
|
|
|
|
|
/** point object, nothing fancy, just allows values to be |
|
passed back and forth by reference rather than by value. |
|
Other point classes may be used as long as they have |
|
x and y properties, which will get modified in the transform method. |
|
*/ |
|
function geocentricToWgs84(p, datum_type, datum_params) { |
|
|
|
if (datum_type === PJD_3PARAM) { |
|
// if( x[io] === HUGE_VAL ) |
|
// continue; |
|
return { |
|
x: p.x + datum_params[0], |
|
y: p.y + datum_params[1], |
|
z: p.z + datum_params[2], |
|
}; |
|
} else if (datum_type === PJD_7PARAM) { |
|
var Dx_BF = datum_params[0]; |
|
var Dy_BF = datum_params[1]; |
|
var Dz_BF = datum_params[2]; |
|
var Rx_BF = datum_params[3]; |
|
var Ry_BF = datum_params[4]; |
|
var Rz_BF = datum_params[5]; |
|
var M_BF = datum_params[6]; |
|
// if( x[io] === HUGE_VAL ) |
|
// continue; |
|
return { |
|
x: M_BF * (p.x - Rz_BF * p.y + Ry_BF * p.z) + Dx_BF, |
|
y: M_BF * (Rz_BF * p.x + p.y - Rx_BF * p.z) + Dy_BF, |
|
z: M_BF * (-Ry_BF * p.x + Rx_BF * p.y + p.z) + Dz_BF |
|
}; |
|
} |
|
} // cs_geocentric_to_wgs84 |
|
|
|
/****************************************************************/ |
|
// pj_geocentic_from_wgs84() |
|
// coordinate system definition, |
|
// point to transform in geocentric coordinates (x,y,z) |
|
function geocentricFromWgs84(p, datum_type, datum_params) { |
|
|
|
if (datum_type === PJD_3PARAM) { |
|
//if( x[io] === HUGE_VAL ) |
|
// continue; |
|
return { |
|
x: p.x - datum_params[0], |
|
y: p.y - datum_params[1], |
|
z: p.z - datum_params[2], |
|
}; |
|
|
|
} else if (datum_type === PJD_7PARAM) { |
|
var Dx_BF = datum_params[0]; |
|
var Dy_BF = datum_params[1]; |
|
var Dz_BF = datum_params[2]; |
|
var Rx_BF = datum_params[3]; |
|
var Ry_BF = datum_params[4]; |
|
var Rz_BF = datum_params[5]; |
|
var M_BF = datum_params[6]; |
|
var x_tmp = (p.x - Dx_BF) / M_BF; |
|
var y_tmp = (p.y - Dy_BF) / M_BF; |
|
var z_tmp = (p.z - Dz_BF) / M_BF; |
|
//if( x[io] === HUGE_VAL ) |
|
// continue; |
|
|
|
return { |
|
x: x_tmp + Rz_BF * y_tmp - Ry_BF * z_tmp, |
|
y: -Rz_BF * x_tmp + y_tmp + Rx_BF * z_tmp, |
|
z: Ry_BF * x_tmp - Rx_BF * y_tmp + z_tmp |
|
}; |
|
} //cs_geocentric_from_wgs84() |
|
} |
|
|
|
function checkParams(type) { |
|
return (type === PJD_3PARAM || type === PJD_7PARAM); |
|
} |
|
|
|
var datum_transform = function(source, dest, point) { |
|
// Short cut if the datums are identical. |
|
if (compareDatums(source, dest)) { |
|
return point; // in this case, zero is sucess, |
|
// whereas cs_compare_datums returns 1 to indicate TRUE |
|
// confusing, should fix this |
|
} |
|
|
|
// Explicitly skip datum transform by setting 'datum=none' as parameter for either source or dest |
|
if (source.datum_type === PJD_NODATUM || dest.datum_type === PJD_NODATUM) { |
|
return point; |
|
} |
|
|
|
// If this datum requires grid shifts, then apply it to geodetic coordinates. |
|
|
|
// Do we need to go through geocentric coordinates? |
|
if (source.es === dest.es && source.a === dest.a && !checkParams(source.datum_type) && !checkParams(dest.datum_type)) { |
|
return point; |
|
} |
|
|
|
// Convert to geocentric coordinates. |
|
point = geodeticToGeocentric(point, source.es, source.a); |
|
// Convert between datums |
|
if (checkParams(source.datum_type)) { |
|
point = geocentricToWgs84(point, source.datum_type, source.datum_params); |
|
} |
|
if (checkParams(dest.datum_type)) { |
|
point = geocentricFromWgs84(point, dest.datum_type, dest.datum_params); |
|
} |
|
return geocentricToGeodetic(point, dest.es, dest.a, dest.b); |
|
|
|
}; |
|
|
|
var adjust_axis = function(crs, denorm, point) { |
|
var xin = point.x, |
|
yin = point.y, |
|
zin = point.z || 0.0; |
|
var v, t, i; |
|
var out = {}; |
|
for (i = 0; i < 3; i++) { |
|
if (denorm && i === 2 && point.z === undefined) { |
|
continue; |
|
} |
|
if (i === 0) { |
|
v = xin; |
|
t = 'x'; |
|
} |
|
else if (i === 1) { |
|
v = yin; |
|
t = 'y'; |
|
} |
|
else { |
|
v = zin; |
|
t = 'z'; |
|
} |
|
switch (crs.axis[i]) { |
|
case 'e': |
|
out[t] = v; |
|
break; |
|
case 'w': |
|
out[t] = -v; |
|
break; |
|
case 'n': |
|
out[t] = v; |
|
break; |
|
case 's': |
|
out[t] = -v; |
|
break; |
|
case 'u': |
|
if (point[t] !== undefined) { |
|
out.z = v; |
|
} |
|
break; |
|
case 'd': |
|
if (point[t] !== undefined) { |
|
out.z = -v; |
|
} |
|
break; |
|
default: |
|
//console.log("ERROR: unknow axis ("+crs.axis[i]+") - check definition of "+crs.projName); |
|
return null; |
|
} |
|
} |
|
return out; |
|
}; |
|
|
|
var toPoint = function (array){ |
|
var out = { |
|
x: array[0], |
|
y: array[1] |
|
}; |
|
if (array.length>2) { |
|
out.z = array[2]; |
|
} |
|
if (array.length>3) { |
|
out.m = array[3]; |
|
} |
|
return out; |
|
}; |
|
|
|
var checkSanity = function (point) { |
|
checkCoord(point.x); |
|
checkCoord(point.y); |
|
}; |
|
function checkCoord(num) { |
|
if (typeof Number.isFinite === 'function') { |
|
if (Number.isFinite(num)) { |
|
return; |
|
} |
|
throw new TypeError('coordinates must be finite numbers'); |
|
} |
|
if (typeof num !== 'number' || num !== num || !isFinite(num)) { |
|
throw new TypeError('coordinates must be finite numbers'); |
|
} |
|
} |
|
|
|
function checkNotWGS(source, dest) { |
|
return ((source.datum.datum_type === PJD_3PARAM || source.datum.datum_type === PJD_7PARAM) && dest.datumCode !== 'WGS84') || ((dest.datum.datum_type === PJD_3PARAM || dest.datum.datum_type === PJD_7PARAM) && source.datumCode !== 'WGS84'); |
|
} |
|
|
|
function transform(source, dest, point) { |
|
var wgs84; |
|
if (Array.isArray(point)) { |
|
point = toPoint(point); |
|
} |
|
checkSanity(point); |
|
// Workaround for datum shifts towgs84, if either source or destination projection is not wgs84 |
|
if (source.datum && dest.datum && checkNotWGS(source, dest)) { |
|
wgs84 = new Projection('WGS84'); |
|
point = transform(source, wgs84, point); |
|
source = wgs84; |
|
} |
|
// DGR, 2010/11/12 |
|
if (source.axis !== 'enu') { |
|
point = adjust_axis(source, false, point); |
|
} |
|
// Transform source points to long/lat, if they aren't already. |
|
if (source.projName === 'longlat') { |
|
point = { |
|
x: point.x * D2R, |
|
y: point.y * D2R, |
|
z: point.z || 0 |
|
}; |
|
} else { |
|
if (source.to_meter) { |
|
point = { |
|
x: point.x * source.to_meter, |
|
y: point.y * source.to_meter, |
|
z: point.z || 0 |
|
}; |
|
} |
|
point = source.inverse(point); // Convert Cartesian to longlat |
|
} |
|
// Adjust for the prime meridian if necessary |
|
if (source.from_greenwich) { |
|
point.x += source.from_greenwich; |
|
} |
|
|
|
// Convert datums if needed, and if possible. |
|
point = datum_transform(source.datum, dest.datum, point); |
|
|
|
// Adjust for the prime meridian if necessary |
|
if (dest.from_greenwich) { |
|
point = { |
|
x: point.x - dest.from_greenwich, |
|
y: point.y, |
|
z: point.z || 0 |
|
}; |
|
} |
|
|
|
if (dest.projName === 'longlat') { |
|
// convert radians to decimal degrees |
|
point = { |
|
x: point.x * R2D, |
|
y: point.y * R2D, |
|
z: point.z || 0 |
|
}; |
|
} else { // else project |
|
point = dest.forward(point); |
|
if (dest.to_meter) { |
|
point = { |
|
x: point.x / dest.to_meter, |
|
y: point.y / dest.to_meter, |
|
z: point.z || 0 |
|
}; |
|
} |
|
} |
|
|
|
// DGR, 2010/11/12 |
|
if (dest.axis !== 'enu') { |
|
return adjust_axis(dest, true, point); |
|
} |
|
|
|
return point; |
|
} |
|
|
|
var wgs84 = Projection('WGS84'); |
|
|
|
function transformer(from, to, coords) { |
|
var transformedArray, out, keys; |
|
if (Array.isArray(coords)) { |
|
transformedArray = transform(from, to, coords) || {x: NaN, y: NaN}; |
|
if (coords.length > 2) { |
|
if ((typeof from.name !== 'undefined' && from.name === 'geocent') || (typeof to.name !== 'undefined' && to.name === 'geocent')) { |
|
if (typeof transformedArray.z === 'number') { |
|
return [transformedArray.x, transformedArray.y, transformedArray.z].concat(coords.splice(3)); |
|
} else { |
|
return [transformedArray.x, transformedArray.y, coords[2]].concat(coords.splice(3)); |
|
} |
|
} else { |
|
return [transformedArray.x, transformedArray.y].concat(coords.splice(2)); |
|
} |
|
} else { |
|
return [transformedArray.x, transformedArray.y]; |
|
} |
|
} else { |
|
out = transform(from, to, coords); |
|
keys = Object.keys(coords); |
|
if (keys.length === 2) { |
|
return out; |
|
} |
|
keys.forEach(function (key) { |
|
if ((typeof from.name !== 'undefined' && from.name === 'geocent') || (typeof to.name !== 'undefined' && to.name === 'geocent')) { |
|
if (key === 'x' || key === 'y' || key === 'z') { |
|
return; |
|
} |
|
} else { |
|
if (key === 'x' || key === 'y') { |
|
return; |
|
} |
|
} |
|
out[key] = coords[key]; |
|
}); |
|
return out; |
|
} |
|
} |
|
|
|
function checkProj(item) { |
|
if (item instanceof Projection) { |
|
return item; |
|
} |
|
if (item.oProj) { |
|
return item.oProj; |
|
} |
|
return Projection(item); |
|
} |
|
|
|
function proj4$1(fromProj, toProj, coord) { |
|
fromProj = checkProj(fromProj); |
|
var single = false; |
|
var obj; |
|
if (typeof toProj === 'undefined') { |
|
toProj = fromProj; |
|
fromProj = wgs84; |
|
single = true; |
|
} else if (typeof toProj.x !== 'undefined' || Array.isArray(toProj)) { |
|
coord = toProj; |
|
toProj = fromProj; |
|
fromProj = wgs84; |
|
single = true; |
|
} |
|
toProj = checkProj(toProj); |
|
if (coord) { |
|
return transformer(fromProj, toProj, coord); |
|
} else { |
|
obj = { |
|
forward: function (coords) { |
|
return transformer(fromProj, toProj, coords); |
|
}, |
|
inverse: function (coords) { |
|
return transformer(toProj, fromProj, coords); |
|
} |
|
}; |
|
if (single) { |
|
obj.oProj = toProj; |
|
} |
|
return obj; |
|
} |
|
} |
|
|
|
/** |
|
* UTM zones are grouped, and assigned to one of a group of 6 |
|
* sets. |
|
* |
|
* {int} @private |
|
*/ |
|
var NUM_100K_SETS = 6; |
|
|
|
/** |
|
* The column letters (for easting) of the lower left value, per |
|
* set. |
|
* |
|
* {string} @private |
|
*/ |
|
var SET_ORIGIN_COLUMN_LETTERS = 'AJSAJS'; |
|
|
|
/** |
|
* The row letters (for northing) of the lower left value, per |
|
* set. |
|
* |
|
* {string} @private |
|
*/ |
|
var SET_ORIGIN_ROW_LETTERS = 'AFAFAF'; |
|
|
|
var A = 65; // A |
|
var I = 73; // I |
|
var O = 79; // O |
|
var V = 86; // V |
|
var Z = 90; // Z |
|
var mgrs = { |
|
forward: forward$1, |
|
inverse: inverse$1, |
|
toPoint: toPoint$1 |
|
}; |
|
/** |
|
* Conversion of lat/lon to MGRS. |
|
* |
|
* @param {object} ll Object literal with lat and lon properties on a |
|
* WGS84 ellipsoid. |
|
* @param {int} accuracy Accuracy in digits (5 for 1 m, 4 for 10 m, 3 for |
|
* 100 m, 2 for 1000 m or 1 for 10000 m). Optional, default is 5. |
|
* @return {string} the MGRS string for the given location and accuracy. |
|
*/ |
|
function forward$1(ll, accuracy) { |
|
accuracy = accuracy || 5; // default accuracy 1m |
|
return encode(LLtoUTM({ |
|
lat: ll[1], |
|
lon: ll[0] |
|
}), accuracy); |
|
} |
|
|
|
/** |
|
* Conversion of MGRS to lat/lon. |
|
* |
|
* @param {string} mgrs MGRS string. |
|
* @return {array} An array with left (longitude), bottom (latitude), right |
|
* (longitude) and top (latitude) values in WGS84, representing the |
|
* bounding box for the provided MGRS reference. |
|
*/ |
|
function inverse$1(mgrs) { |
|
var bbox = UTMtoLL(decode(mgrs.toUpperCase())); |
|
if (bbox.lat && bbox.lon) { |
|
return [bbox.lon, bbox.lat, bbox.lon, bbox.lat]; |
|
} |
|
return [bbox.left, bbox.bottom, bbox.right, bbox.top]; |
|
} |
|
|
|
function toPoint$1(mgrs) { |
|
var bbox = UTMtoLL(decode(mgrs.toUpperCase())); |
|
if (bbox.lat && bbox.lon) { |
|
return [bbox.lon, bbox.lat]; |
|
} |
|
return [(bbox.left + bbox.right) / 2, (bbox.top + bbox.bottom) / 2]; |
|
} |
|
/** |
|
* Conversion from degrees to radians. |
|
* |
|
* @private |
|
* @param {number} deg the angle in degrees. |
|
* @return {number} the angle in radians. |
|
*/ |
|
function degToRad(deg) { |
|
return (deg * (Math.PI / 180.0)); |
|
} |
|
|
|
/** |
|
* Conversion from radians to degrees. |
|
* |
|
* @private |
|
* @param {number} rad the angle in radians. |
|
* @return {number} the angle in degrees. |
|
*/ |
|
function radToDeg(rad) { |
|
return (180.0 * (rad / Math.PI)); |
|
} |
|
|
|
/** |
|
* Converts a set of Longitude and Latitude co-ordinates to UTM |
|
* using the WGS84 ellipsoid. |
|
* |
|
* @private |
|
* @param {object} ll Object literal with lat and lon properties |
|
* representing the WGS84 coordinate to be converted. |
|
* @return {object} Object literal containing the UTM value with easting, |
|
* northing, zoneNumber and zoneLetter properties, and an optional |
|
* accuracy property in digits. Returns null if the conversion failed. |
|
*/ |
|
function LLtoUTM(ll) { |
|
var Lat = ll.lat; |
|
var Long = ll.lon; |
|
var a = 6378137.0; //ellip.radius; |
|
var eccSquared = 0.00669438; //ellip.eccsq; |
|
var k0 = 0.9996; |
|
var LongOrigin; |
|
var eccPrimeSquared; |
|
var N, T, C, A, M; |
|
var LatRad = degToRad(Lat); |
|
var LongRad = degToRad(Long); |
|
var LongOriginRad; |
|
var ZoneNumber; |
|
// (int) |
|
ZoneNumber = Math.floor((Long + 180) / 6) + 1; |
|
|
|
//Make sure the longitude 180.00 is in Zone 60 |
|
if (Long === 180) { |
|
ZoneNumber = 60; |
|
} |
|
|
|
// Special zone for Norway |
|
if (Lat >= 56.0 && Lat < 64.0 && Long >= 3.0 && Long < 12.0) { |
|
ZoneNumber = 32; |
|
} |
|
|
|
// Special zones for Svalbard |
|
if (Lat >= 72.0 && Lat < 84.0) { |
|
if (Long >= 0.0 && Long < 9.0) { |
|
ZoneNumber = 31; |
|
} |
|
else if (Long >= 9.0 && Long < 21.0) { |
|
ZoneNumber = 33; |
|
} |
|
else if (Long >= 21.0 && Long < 33.0) { |
|
ZoneNumber = 35; |
|
} |
|
else if (Long >= 33.0 && Long < 42.0) { |
|
ZoneNumber = 37; |
|
} |
|
} |
|
|
|
LongOrigin = (ZoneNumber - 1) * 6 - 180 + 3; //+3 puts origin |
|
// in middle of |
|
// zone |
|
LongOriginRad = degToRad(LongOrigin); |
|
|
|
eccPrimeSquared = (eccSquared) / (1 - eccSquared); |
|
|
|
N = a / Math.sqrt(1 - eccSquared * Math.sin(LatRad) * Math.sin(LatRad)); |
|
T = Math.tan(LatRad) * Math.tan(LatRad); |
|
C = eccPrimeSquared * Math.cos(LatRad) * Math.cos(LatRad); |
|
A = Math.cos(LatRad) * (LongRad - LongOriginRad); |
|
|
|
M = a * ((1 - eccSquared / 4 - 3 * eccSquared * eccSquared / 64 - 5 * eccSquared * eccSquared * eccSquared / 256) * LatRad - (3 * eccSquared / 8 + 3 * eccSquared * eccSquared / 32 + 45 * eccSquared * eccSquared * eccSquared / 1024) * Math.sin(2 * LatRad) + (15 * eccSquared * eccSquared / 256 + 45 * eccSquared * eccSquared * eccSquared / 1024) * Math.sin(4 * LatRad) - (35 * eccSquared * eccSquared * eccSquared / 3072) * Math.sin(6 * LatRad)); |
|
|
|
var UTMEasting = (k0 * N * (A + (1 - T + C) * A * A * A / 6.0 + (5 - 18 * T + T * T + 72 * C - 58 * eccPrimeSquared) * A * A * A * A * A / 120.0) + 500000.0); |
|
|
|
var UTMNorthing = (k0 * (M + N * Math.tan(LatRad) * (A * A / 2 + (5 - T + 9 * C + 4 * C * C) * A * A * A * A / 24.0 + (61 - 58 * T + T * T + 600 * C - 330 * eccPrimeSquared) * A * A * A * A * A * A / 720.0))); |
|
if (Lat < 0.0) { |
|
UTMNorthing += 10000000.0; //10000000 meter offset for |
|
// southern hemisphere |
|
} |
|
|
|
return { |
|
northing: Math.round(UTMNorthing), |
|
easting: Math.round(UTMEasting), |
|
zoneNumber: ZoneNumber, |
|
zoneLetter: getLetterDesignator(Lat) |
|
}; |
|
} |
|
|
|
/** |
|
* Converts UTM coords to lat/long, using the WGS84 ellipsoid. This is a convenience |
|
* class where the Zone can be specified as a single string eg."60N" which |
|
* is then broken down into the ZoneNumber and ZoneLetter. |
|
* |
|
* @private |
|
* @param {object} utm An object literal with northing, easting, zoneNumber |
|
* and zoneLetter properties. If an optional accuracy property is |
|
* provided (in meters), a bounding box will be returned instead of |
|
* latitude and longitude. |
|
* @return {object} An object literal containing either lat and lon values |
|
* (if no accuracy was provided), or top, right, bottom and left values |
|
* for the bounding box calculated according to the provided accuracy. |
|
* Returns null if the conversion failed. |
|
*/ |
|
function UTMtoLL(utm) { |
|
|
|
var UTMNorthing = utm.northing; |
|
var UTMEasting = utm.easting; |
|
var zoneLetter = utm.zoneLetter; |
|
var zoneNumber = utm.zoneNumber; |
|
// check the ZoneNummber is valid |
|
if (zoneNumber < 0 || zoneNumber > 60) { |
|
return null; |
|
} |
|
|
|
var k0 = 0.9996; |
|
var a = 6378137.0; //ellip.radius; |
|
var eccSquared = 0.00669438; //ellip.eccsq; |
|
var eccPrimeSquared; |
|
var e1 = (1 - Math.sqrt(1 - eccSquared)) / (1 + Math.sqrt(1 - eccSquared)); |
|
var N1, T1, C1, R1, D, M; |
|
var LongOrigin; |
|
var mu, phi1Rad; |
|
|
|
// remove 500,000 meter offset for longitude |
|
var x = UTMEasting - 500000.0; |
|
var y = UTMNorthing; |
|
|
|
// We must know somehow if we are in the Northern or Southern |
|
// hemisphere, this is the only time we use the letter So even |
|
// if the Zone letter isn't exactly correct it should indicate |
|
// the hemisphere correctly |
|
if (zoneLetter < 'N') { |
|
y -= 10000000.0; // remove 10,000,000 meter offset used |
|
// for southern hemisphere |
|
} |
|
|
|
// There are 60 zones with zone 1 being at West -180 to -174 |
|
LongOrigin = (zoneNumber - 1) * 6 - 180 + 3; // +3 puts origin |
|
// in middle of |
|
// zone |
|
|
|
eccPrimeSquared = (eccSquared) / (1 - eccSquared); |
|
|
|
M = y / k0; |
|
mu = M / (a * (1 - eccSquared / 4 - 3 * eccSquared * eccSquared / 64 - 5 * eccSquared * eccSquared * eccSquared / 256)); |
|
|
|
phi1Rad = mu + (3 * e1 / 2 - 27 * e1 * e1 * e1 / 32) * Math.sin(2 * mu) + (21 * e1 * e1 / 16 - 55 * e1 * e1 * e1 * e1 / 32) * Math.sin(4 * mu) + (151 * e1 * e1 * e1 / 96) * Math.sin(6 * mu); |
|
// double phi1 = ProjMath.radToDeg(phi1Rad); |
|
|
|
N1 = a / Math.sqrt(1 - eccSquared * Math.sin(phi1Rad) * Math.sin(phi1Rad)); |
|
T1 = Math.tan(phi1Rad) * Math.tan(phi1Rad); |
|
C1 = eccPrimeSquared * Math.cos(phi1Rad) * Math.cos(phi1Rad); |
|
R1 = a * (1 - eccSquared) / Math.pow(1 - eccSquared * Math.sin(phi1Rad) * Math.sin(phi1Rad), 1.5); |
|
D = x / (N1 * k0); |
|
|
|
var lat = phi1Rad - (N1 * Math.tan(phi1Rad) / R1) * (D * D / 2 - (5 + 3 * T1 + 10 * C1 - 4 * C1 * C1 - 9 * eccPrimeSquared) * D * D * D * D / 24 + (61 + 90 * T1 + 298 * C1 + 45 * T1 * T1 - 252 * eccPrimeSquared - 3 * C1 * C1) * D * D * D * D * D * D / 720); |
|
lat = radToDeg(lat); |
|
|
|
var lon = (D - (1 + 2 * T1 + C1) * D * D * D / 6 + (5 - 2 * C1 + 28 * T1 - 3 * C1 * C1 + 8 * eccPrimeSquared + 24 * T1 * T1) * D * D * D * D * D / 120) / Math.cos(phi1Rad); |
|
lon = LongOrigin + radToDeg(lon); |
|
|
|
var result; |
|
if (utm.accuracy) { |
|
var topRight = UTMtoLL({ |
|
northing: utm.northing + utm.accuracy, |
|
easting: utm.easting + utm.accuracy, |
|
zoneLetter: utm.zoneLetter, |
|
zoneNumber: utm.zoneNumber |
|
}); |
|
result = { |
|
top: topRight.lat, |
|
right: topRight.lon, |
|
bottom: lat, |
|
left: lon |
|
}; |
|
} |
|
else { |
|
result = { |
|
lat: lat, |
|
lon: lon |
|
}; |
|
} |
|
return result; |
|
} |
|
|
|
/** |
|
* Calculates the MGRS letter designator for the given latitude. |
|
* |
|
* @private |
|
* @param {number} lat The latitude in WGS84 to get the letter designator |
|
* for. |
|
* @return {char} The letter designator. |
|
*/ |
|
function getLetterDesignator(lat) { |
|
//This is here as an error flag to show that the Latitude is |
|
//outside MGRS limits |
|
var LetterDesignator = 'Z'; |
|
|
|
if ((84 >= lat) && (lat >= 72)) { |
|
LetterDesignator = 'X'; |
|
} |
|
else if ((72 > lat) && (lat >= 64)) { |
|
LetterDesignator = 'W'; |
|
} |
|
else if ((64 > lat) && (lat >= 56)) { |
|
LetterDesignator = 'V'; |
|
} |
|
else if ((56 > lat) && (lat >= 48)) { |
|
LetterDesignator = 'U'; |
|
} |
|
else if ((48 > lat) && (lat >= 40)) { |
|
LetterDesignator = 'T'; |
|
} |
|
else if ((40 > lat) && (lat >= 32)) { |
|
LetterDesignator = 'S'; |
|
} |
|
else if ((32 > lat) && (lat >= 24)) { |
|
LetterDesignator = 'R'; |
|
} |
|
else if ((24 > lat) && (lat >= 16)) { |
|
LetterDesignator = 'Q'; |
|
} |
|
else if ((16 > lat) && (lat >= 8)) { |
|
LetterDesignator = 'P'; |
|
} |
|
else if ((8 > lat) && (lat >= 0)) { |
|
LetterDesignator = 'N'; |
|
} |
|
else if ((0 > lat) && (lat >= -8)) { |
|
LetterDesignator = 'M'; |
|
} |
|
else if ((-8 > lat) && (lat >= -16)) { |
|
LetterDesignator = 'L'; |
|
} |
|
else if ((-16 > lat) && (lat >= -24)) { |
|
LetterDesignator = 'K'; |
|
} |
|
else if ((-24 > lat) && (lat >= -32)) { |
|
LetterDesignator = 'J'; |
|
} |
|
else if ((-32 > lat) && (lat >= -40)) { |
|
LetterDesignator = 'H'; |
|
} |
|
else if ((-40 > lat) && (lat >= -48)) { |
|
LetterDesignator = 'G'; |
|
} |
|
else if ((-48 > lat) && (lat >= -56)) { |
|
LetterDesignator = 'F'; |
|
} |
|
else if ((-56 > lat) && (lat >= -64)) { |
|
LetterDesignator = 'E'; |
|
} |
|
else if ((-64 > lat) && (lat >= -72)) { |
|
LetterDesignator = 'D'; |
|
} |
|
else if ((-72 > lat) && (lat >= -80)) { |
|
LetterDesignator = 'C'; |
|
} |
|
return LetterDesignator; |
|
} |
|
|
|
/** |
|
* Encodes a UTM location as MGRS string. |
|
* |
|
* @private |
|
* @param {object} utm An object literal with easting, northing, |
|
* zoneLetter, zoneNumber |
|
* @param {number} accuracy Accuracy in digits (1-5). |
|
* @return {string} MGRS string for the given UTM location. |
|
*/ |
|
function encode(utm, accuracy) { |
|
// prepend with leading zeroes |
|
var seasting = "00000" + utm.easting, |
|
snorthing = "00000" + utm.northing; |
|
|
|
return utm.zoneNumber + utm.zoneLetter + get100kID(utm.easting, utm.northing, utm.zoneNumber) + seasting.substr(seasting.length - 5, accuracy) + snorthing.substr(snorthing.length - 5, accuracy); |
|
} |
|
|
|
/** |
|
* Get the two letter 100k designator for a given UTM easting, |
|
* northing and zone number value. |
|
* |
|
* @private |
|
* @param {number} easting |
|
* @param {number} northing |
|
* @param {number} zoneNumber |
|
* @return the two letter 100k designator for the given UTM location. |
|
*/ |
|
function get100kID(easting, northing, zoneNumber) { |
|
var setParm = get100kSetForZone(zoneNumber); |
|
var setColumn = Math.floor(easting / 100000); |
|
var setRow = Math.floor(northing / 100000) % 20; |
|
return getLetter100kID(setColumn, setRow, setParm); |
|
} |
|
|
|
/** |
|
* Given a UTM zone number, figure out the MGRS 100K set it is in. |
|
* |
|
* @private |
|
* @param {number} i An UTM zone number. |
|
* @return {number} the 100k set the UTM zone is in. |
|
*/ |
|
function get100kSetForZone(i) { |
|
var setParm = i % NUM_100K_SETS; |
|
if (setParm === 0) { |
|
setParm = NUM_100K_SETS; |
|
} |
|
|
|
return setParm; |
|
} |
|
|
|
/** |
|
* Get the two-letter MGRS 100k designator given information |
|
* translated from the UTM northing, easting and zone number. |
|
* |
|
* @private |
|
* @param {number} column the column index as it relates to the MGRS |
|
* 100k set spreadsheet, created from the UTM easting. |
|
* Values are 1-8. |
|
* @param {number} row the row index as it relates to the MGRS 100k set |
|
* spreadsheet, created from the UTM northing value. Values |
|
* are from 0-19. |
|
* @param {number} parm the set block, as it relates to the MGRS 100k set |
|
* spreadsheet, created from the UTM zone. Values are from |
|
* 1-60. |
|
* @return two letter MGRS 100k code. |
|
*/ |
|
function getLetter100kID(column, row, parm) { |
|
// colOrigin and rowOrigin are the letters at the origin of the set |
|
var index = parm - 1; |
|
var colOrigin = SET_ORIGIN_COLUMN_LETTERS.charCodeAt(index); |
|
var rowOrigin = SET_ORIGIN_ROW_LETTERS.charCodeAt(index); |
|
|
|
// colInt and rowInt are the letters to build to return |
|
var colInt = colOrigin + column - 1; |
|
var rowInt = rowOrigin + row; |
|
var rollover = false; |
|
|
|
if (colInt > Z) { |
|
colInt = colInt - Z + A - 1; |
|
rollover = true; |
|
} |
|
|
|
if (colInt === I || (colOrigin < I && colInt > I) || ((colInt > I || colOrigin < I) && rollover)) { |
|
colInt++; |
|
} |
|
|
|
if (colInt === O || (colOrigin < O && colInt > O) || ((colInt > O || colOrigin < O) && rollover)) { |
|
colInt++; |
|
|
|
if (colInt === I) { |
|
colInt++; |
|
} |
|
} |
|
|
|
if (colInt > Z) { |
|
colInt = colInt - Z + A - 1; |
|
} |
|
|
|
if (rowInt > V) { |
|
rowInt = rowInt - V + A - 1; |
|
rollover = true; |
|
} |
|
else { |
|
rollover = false; |
|
} |
|
|
|
if (((rowInt === I) || ((rowOrigin < I) && (rowInt > I))) || (((rowInt > I) || (rowOrigin < I)) && rollover)) { |
|
rowInt++; |
|
} |
|
|
|
if (((rowInt === O) || ((rowOrigin < O) && (rowInt > O))) || (((rowInt > O) || (rowOrigin < O)) && rollover)) { |
|
rowInt++; |
|
|
|
if (rowInt === I) { |
|
rowInt++; |
|
} |
|
} |
|
|
|
if (rowInt > V) { |
|
rowInt = rowInt - V + A - 1; |
|
} |
|
|
|
var twoLetter = String.fromCharCode(colInt) + String.fromCharCode(rowInt); |
|
return twoLetter; |
|
} |
|
|
|
/** |
|
* Decode the UTM parameters from a MGRS string. |
|
* |
|
* @private |
|
* @param {string} mgrsString an UPPERCASE coordinate string is expected. |
|
* @return {object} An object literal with easting, northing, zoneLetter, |
|
* zoneNumber and accuracy (in meters) properties. |
|
*/ |
|
function decode(mgrsString) { |
|
|
|
if (mgrsString && mgrsString.length === 0) { |
|
throw ("MGRSPoint coverting from nothing"); |
|
} |
|
|
|
var length = mgrsString.length; |
|
|
|
var hunK = null; |
|
var sb = ""; |
|
var testChar; |
|
var i = 0; |
|
|
|
// get Zone number |
|
while (!(/[A-Z]/).test(testChar = mgrsString.charAt(i))) { |
|
if (i >= 2) { |
|
throw ("MGRSPoint bad conversion from: " + mgrsString); |
|
} |
|
sb += testChar; |
|
i++; |
|
} |
|
|
|
var zoneNumber = parseInt(sb, 10); |
|
|
|
if (i === 0 || i + 3 > length) { |
|
// A good MGRS string has to be 4-5 digits long, |
|
// ##AAA/#AAA at least. |
|
throw ("MGRSPoint bad conversion from: " + mgrsString); |
|
} |
|
|
|
var zoneLetter = mgrsString.charAt(i++); |
|
|
|
// Should we check the zone letter here? Why not. |
|
if (zoneLetter <= 'A' || zoneLetter === 'B' || zoneLetter === 'Y' || zoneLetter >= 'Z' || zoneLetter === 'I' || zoneLetter === 'O') { |
|
throw ("MGRSPoint zone letter " + zoneLetter + " not handled: " + mgrsString); |
|
} |
|
|
|
hunK = mgrsString.substring(i, i += 2); |
|
|
|
var set = get100kSetForZone(zoneNumber); |
|
|
|
var east100k = getEastingFromChar(hunK.charAt(0), set); |
|
var north100k = getNorthingFromChar(hunK.charAt(1), set); |
|
|
|
// We have a bug where the northing may be 2000000 too low. |
|
// How |
|
// do we know when to roll over? |
|
|
|
while (north100k < getMinNorthing(zoneLetter)) { |
|
north100k += 2000000; |
|
} |
|
|
|
// calculate the char index for easting/northing separator |
|
var remainder = length - i; |
|
|
|
if (remainder % 2 !== 0) { |
|
throw ("MGRSPoint has to have an even number \nof digits after the zone letter and two 100km letters - front \nhalf for easting meters, second half for \nnorthing meters" + mgrsString); |
|
} |
|
|
|
var sep = remainder / 2; |
|
|
|
var sepEasting = 0.0; |
|
var sepNorthing = 0.0; |
|
var accuracyBonus, sepEastingString, sepNorthingString, easting, northing; |
|
if (sep > 0) { |
|
accuracyBonus = 100000.0 / Math.pow(10, sep); |
|
sepEastingString = mgrsString.substring(i, i + sep); |
|
sepEasting = parseFloat(sepEastingString) * accuracyBonus; |
|
sepNorthingString = mgrsString.substring(i + sep); |
|
sepNorthing = parseFloat(sepNorthingString) * accuracyBonus; |
|
} |
|
|
|
easting = sepEasting + east100k; |
|
northing = sepNorthing + north100k; |
|
|
|
return { |
|
easting: easting, |
|
northing: northing, |
|
zoneLetter: zoneLetter, |
|
zoneNumber: zoneNumber, |
|
accuracy: accuracyBonus |
|
}; |
|
} |
|
|
|
/** |
|
* Given the first letter from a two-letter MGRS 100k zone, and given the |
|
* MGRS table set for the zone number, figure out the easting value that |
|
* should be added to the other, secondary easting value. |
|
* |
|
* @private |
|
* @param {char} e The first letter from a two-letter MGRS 100´k zone. |
|
* @param {number} set The MGRS table set for the zone number. |
|
* @return {number} The easting value for the given letter and set. |
|
*/ |
|
function getEastingFromChar(e, set) { |
|
// colOrigin is the letter at the origin of the set for the |
|
// column |
|
var curCol = SET_ORIGIN_COLUMN_LETTERS.charCodeAt(set - 1); |
|
var eastingValue = 100000.0; |
|
var rewindMarker = false; |
|
|
|
while (curCol !== e.charCodeAt(0)) { |
|
curCol++; |
|
if (curCol === I) { |
|
curCol++; |
|
} |
|
if (curCol === O) { |
|
curCol++; |
|
} |
|
if (curCol > Z) { |
|
if (rewindMarker) { |
|
throw ("Bad character: " + e); |
|
} |
|
curCol = A; |
|
rewindMarker = true; |
|
} |
|
eastingValue += 100000.0; |
|
} |
|
|
|
return eastingValue; |
|
} |
|
|
|
/** |
|
* Given the second letter from a two-letter MGRS 100k zone, and given the |
|
* MGRS table set for the zone number, figure out the northing value that |
|
* should be added to the other, secondary northing value. You have to |
|
* remember that Northings are determined from the equator, and the vertical |
|
* cycle of letters mean a 2000000 additional northing meters. This happens |
|
* approx. every 18 degrees of latitude. This method does *NOT* count any |
|
* additional northings. You have to figure out how many 2000000 meters need |
|
* to be added for the zone letter of the MGRS coordinate. |
|
* |
|
* @private |
|
* @param {char} n Second letter of the MGRS 100k zone |
|
* @param {number} set The MGRS table set number, which is dependent on the |
|
* UTM zone number. |
|
* @return {number} The northing value for the given letter and set. |
|
*/ |
|
function getNorthingFromChar(n, set) { |
|
|
|
if (n > 'V') { |
|
throw ("MGRSPoint given invalid Northing " + n); |
|
} |
|
|
|
// rowOrigin is the letter at the origin of the set for the |
|
// column |
|
var curRow = SET_ORIGIN_ROW_LETTERS.charCodeAt(set - 1); |
|
var northingValue = 0.0; |
|
var rewindMarker = false; |
|
|
|
while (curRow !== n.charCodeAt(0)) { |
|
curRow++; |
|
if (curRow === I) { |
|
curRow++; |
|
} |
|
if (curRow === O) { |
|
curRow++; |
|
} |
|
// fixing a bug making whole application hang in this loop |
|
// when 'n' is a wrong character |
|
if (curRow > V) { |
|
if (rewindMarker) { // making sure that this loop ends |
|
throw ("Bad character: " + n); |
|
} |
|
curRow = A; |
|
rewindMarker = true; |
|
} |
|
northingValue += 100000.0; |
|
} |
|
|
|
return northingValue; |
|
} |
|
|
|
/** |
|
* The function getMinNorthing returns the minimum northing value of a MGRS |
|
* zone. |
|
* |
|
* Ported from Geotrans' c Lattitude_Band_Value structure table. |
|
* |
|
* @private |
|
* @param {char} zoneLetter The MGRS zone to get the min northing for. |
|
* @return {number} |
|
*/ |
|
function getMinNorthing(zoneLetter) { |
|
var northing; |
|
switch (zoneLetter) { |
|
case 'C': |
|
northing = 1100000.0; |
|
break; |
|
case 'D': |
|
northing = 2000000.0; |
|
break; |
|
case 'E': |
|
northing = 2800000.0; |
|
break; |
|
case 'F': |
|
northing = 3700000.0; |
|
break; |
|
case 'G': |
|
northing = 4600000.0; |
|
break; |
|
case 'H': |
|
northing = 5500000.0; |
|
break; |
|
case 'J': |
|
northing = 6400000.0; |
|
break; |
|
case 'K': |
|
northing = 7300000.0; |
|
break; |
|
case 'L': |
|
northing = 8200000.0; |
|
break; |
|
case 'M': |
|
northing = 9100000.0; |
|
break; |
|
case 'N': |
|
northing = 0.0; |
|
break; |
|
case 'P': |
|
northing = 800000.0; |
|
break; |
|
case 'Q': |
|
northing = 1700000.0; |
|
break; |
|
case 'R': |
|
northing = 2600000.0; |
|
break; |
|
case 'S': |
|
northing = 3500000.0; |
|
break; |
|
case 'T': |
|
northing = 4400000.0; |
|
break; |
|
case 'U': |
|
northing = 5300000.0; |
|
break; |
|
case 'V': |
|
northing = 6200000.0; |
|
break; |
|
case 'W': |
|
northing = 7000000.0; |
|
break; |
|
case 'X': |
|
northing = 7900000.0; |
|
break; |
|
default: |
|
northing = -1.0; |
|
} |
|
if (northing >= 0.0) { |
|
return northing; |
|
} |
|
else { |
|
throw ("Invalid zone letter: " + zoneLetter); |
|
} |
|
|
|
} |
|
|
|
function Point(x, y, z) { |
|
if (!(this instanceof Point)) { |
|
return new Point(x, y, z); |
|
} |
|
if (Array.isArray(x)) { |
|
this.x = x[0]; |
|
this.y = x[1]; |
|
this.z = x[2] || 0.0; |
|
} else if(typeof x === 'object') { |
|
this.x = x.x; |
|
this.y = x.y; |
|
this.z = x.z || 0.0; |
|
} else if (typeof x === 'string' && typeof y === 'undefined') { |
|
var coords = x.split(','); |
|
this.x = parseFloat(coords[0], 10); |
|
this.y = parseFloat(coords[1], 10); |
|
this.z = parseFloat(coords[2], 10) || 0.0; |
|
} else { |
|
this.x = x; |
|
this.y = y; |
|
this.z = z || 0.0; |
|
} |
|
console.warn('proj4.Point will be removed in version 3, use proj4.toPoint'); |
|
} |
|
|
|
Point.fromMGRS = function(mgrsStr) { |
|
return new Point(toPoint$1(mgrsStr)); |
|
}; |
|
Point.prototype.toMGRS = function(accuracy) { |
|
return forward$1([this.x, this.y], accuracy); |
|
}; |
|
|
|
var C00 = 1; |
|
var C02 = 0.25; |
|
var C04 = 0.046875; |
|
var C06 = 0.01953125; |
|
var C08 = 0.01068115234375; |
|
var C22 = 0.75; |
|
var C44 = 0.46875; |
|
var C46 = 0.01302083333333333333; |
|
var C48 = 0.00712076822916666666; |
|
var C66 = 0.36458333333333333333; |
|
var C68 = 0.00569661458333333333; |
|
var C88 = 0.3076171875; |
|
|
|
var pj_enfn = function(es) { |
|
var en = []; |
|
en[0] = C00 - es * (C02 + es * (C04 + es * (C06 + es * C08))); |
|
en[1] = es * (C22 - es * (C04 + es * (C06 + es * C08))); |
|
var t = es * es; |
|
en[2] = t * (C44 - es * (C46 + es * C48)); |
|
t *= es; |
|
en[3] = t * (C66 - es * C68); |
|
en[4] = t * es * C88; |
|
return en; |
|
}; |
|
|
|
var pj_mlfn = function(phi, sphi, cphi, en) { |
|
cphi *= sphi; |
|
sphi *= sphi; |
|
return (en[0] * phi - cphi * (en[1] + sphi * (en[2] + sphi * (en[3] + sphi * en[4])))); |
|
}; |
|
|
|
var MAX_ITER = 20; |
|
|
|
var pj_inv_mlfn = function(arg, es, en) { |
|
var k = 1 / (1 - es); |
|
var phi = arg; |
|
for (var i = MAX_ITER; i; --i) { /* rarely goes over 2 iterations */ |
|
var s = Math.sin(phi); |
|
var t = 1 - es * s * s; |
|
//t = this.pj_mlfn(phi, s, Math.cos(phi), en) - arg; |
|
//phi -= t * (t * Math.sqrt(t)) * k; |
|
t = (pj_mlfn(phi, s, Math.cos(phi), en) - arg) * (t * Math.sqrt(t)) * k; |
|
phi -= t; |
|
if (Math.abs(t) < EPSLN) { |
|
return phi; |
|
} |
|
} |
|
//..reportError("cass:pj_inv_mlfn: Convergence error"); |
|
return phi; |
|
}; |
|
|
|
// Heavily based on this tmerc projection implementation |
|
// https://github.com/mbloch/mapshaper-proj/blob/master/src/projections/tmerc.js |
|
|
|
function init$2() { |
|
this.x0 = this.x0 !== undefined ? this.x0 : 0; |
|
this.y0 = this.y0 !== undefined ? this.y0 : 0; |
|
this.long0 = this.long0 !== undefined ? this.long0 : 0; |
|
this.lat0 = this.lat0 !== undefined ? this.lat0 : 0; |
|
|
|
if (this.es) { |
|
this.en = pj_enfn(this.es); |
|
this.ml0 = pj_mlfn(this.lat0, Math.sin(this.lat0), Math.cos(this.lat0), this.en); |
|
} |
|
} |
|
|
|
/** |
|
Transverse Mercator Forward - long/lat to x/y |
|
long/lat in radians |
|
*/ |
|
function forward$2(p) { |
|
var lon = p.x; |
|
var lat = p.y; |
|
|
|
var delta_lon = adjust_lon(lon - this.long0); |
|
var con; |
|
var x, y; |
|
var sin_phi = Math.sin(lat); |
|
var cos_phi = Math.cos(lat); |
|
|
|
if (!this.es) { |
|
var b = cos_phi * Math.sin(delta_lon); |
|
|
|
if ((Math.abs(Math.abs(b) - 1)) < EPSLN) { |
|
return (93); |
|
} |
|
else { |
|
x = 0.5 * this.a * this.k0 * Math.log((1 + b) / (1 - b)) + this.x0; |
|
y = cos_phi * Math.cos(delta_lon) / Math.sqrt(1 - Math.pow(b, 2)); |
|
b = Math.abs(y); |
|
|
|
if (b >= 1) { |
|
if ((b - 1) > EPSLN) { |
|
return (93); |
|
} |
|
else { |
|
y = 0; |
|
} |
|
} |
|
else { |
|
y = Math.acos(y); |
|
} |
|
|
|
if (lat < 0) { |
|
y = -y; |
|
} |
|
|
|
y = this.a * this.k0 * (y - this.lat0) + this.y0; |
|
} |
|
} |
|
else { |
|
var al = cos_phi * delta_lon; |
|
var als = Math.pow(al, 2); |
|
var c = this.ep2 * Math.pow(cos_phi, 2); |
|
var cs = Math.pow(c, 2); |
|
var tq = Math.abs(cos_phi) > EPSLN ? Math.tan(lat) : 0; |
|
var t = Math.pow(tq, 2); |
|
var ts = Math.pow(t, 2); |
|
con = 1 - this.es * Math.pow(sin_phi, 2); |
|
al = al / Math.sqrt(con); |
|
var ml = pj_mlfn(lat, sin_phi, cos_phi, this.en); |
|
|
|
x = this.a * (this.k0 * al * (1 + |
|
als / 6 * (1 - t + c + |
|
als / 20 * (5 - 18 * t + ts + 14 * c - 58 * t * c + |
|
als / 42 * (61 + 179 * ts - ts * t - 479 * t))))) + |
|
this.x0; |
|
|
|
y = this.a * (this.k0 * (ml - this.ml0 + |
|
sin_phi * delta_lon * al / 2 * (1 + |
|
als / 12 * (5 - t + 9 * c + 4 * cs + |
|
als / 30 * (61 + ts - 58 * t + 270 * c - 330 * t * c + |
|
als / 56 * (1385 + 543 * ts - ts * t - 3111 * t)))))) + |
|
this.y0; |
|
} |
|
|
|
p.x = x; |
|
p.y = y; |
|
|
|
return p; |
|
} |
|
|
|
/** |
|
Transverse Mercator Inverse - x/y to long/lat |
|
*/ |
|
function inverse$2(p) { |
|
var con, phi; |
|
var lat, lon; |
|
var x = (p.x - this.x0) * (1 / this.a); |
|
var y = (p.y - this.y0) * (1 / this.a); |
|
|
|
if (!this.es) { |
|
var f = Math.exp(x / this.k0); |
|
var g = 0.5 * (f - 1 / f); |
|
var temp = this.lat0 + y / this.k0; |
|
var h = Math.cos(temp); |
|
con = Math.sqrt((1 - Math.pow(h, 2)) / (1 + Math.pow(g, 2))); |
|
lat = Math.asin(con); |
|
|
|
if (y < 0) { |
|
lat = -lat; |
|
} |
|
|
|
if ((g === 0) && (h === 0)) { |
|
lon = 0; |
|
} |
|
else { |
|
lon = adjust_lon(Math.atan2(g, h) + this.long0); |
|
} |
|
} |
|
else { // ellipsoidal form |
|
con = this.ml0 + y / this.k0; |
|
phi = pj_inv_mlfn(con, this.es, this.en); |
|
|
|
if (Math.abs(phi) < HALF_PI) { |
|
var sin_phi = Math.sin(phi); |
|
var cos_phi = Math.cos(phi); |
|
var tan_phi = Math.abs(cos_phi) > EPSLN ? Math.tan(phi) : 0; |
|
var c = this.ep2 * Math.pow(cos_phi, 2); |
|
var cs = Math.pow(c, 2); |
|
var t = Math.pow(tan_phi, 2); |
|
var ts = Math.pow(t, 2); |
|
con = 1 - this.es * Math.pow(sin_phi, 2); |
|
var d = x * Math.sqrt(con) / this.k0; |
|
var ds = Math.pow(d, 2); |
|
con = con * tan_phi; |
|
|
|
lat = phi - (con * ds / (1 - this.es)) * 0.5 * (1 - |
|
ds / 12 * (5 + 3 * t - 9 * c * t + c - 4 * cs - |
|
ds / 30 * (61 + 90 * t - 252 * c * t + 45 * ts + 46 * c - |
|
ds / 56 * (1385 + 3633 * t + 4095 * ts + 1574 * ts * t)))); |
|
|
|
lon = adjust_lon(this.long0 + (d * (1 - |
|
ds / 6 * (1 + 2 * t + c - |
|
ds / 20 * (5 + 28 * t + 24 * ts + 8 * c * t + 6 * c - |
|
ds / 42 * (61 + 662 * t + 1320 * ts + 720 * ts * t)))) / cos_phi)); |
|
} |
|
else { |
|
lat = HALF_PI * sign(y); |
|
lon = 0; |
|
} |
|
} |
|
|
|
p.x = lon; |
|
p.y = lat; |
|
|
|
return p; |
|
} |
|
|
|
var names$3 = ["Transverse_Mercator", "Transverse Mercator", "tmerc"]; |
|
var tmerc = { |
|
init: init$2, |
|
forward: forward$2, |
|
inverse: inverse$2, |
|
names: names$3 |
|
}; |
|
|
|
var sinh = function(x) { |
|
var r = Math.exp(x); |
|
r = (r - 1 / r) / 2; |
|
return r; |
|
}; |
|
|
|
var hypot = function(x, y) { |
|
x = Math.abs(x); |
|
y = Math.abs(y); |
|
var a = Math.max(x, y); |
|
var b = Math.min(x, y) / (a ? a : 1); |
|
|
|
return a * Math.sqrt(1 + Math.pow(b, 2)); |
|
}; |
|
|
|
var log1py = function(x) { |
|
var y = 1 + x; |
|
var z = y - 1; |
|
|
|
return z === 0 ? x : x * Math.log(y) / z; |
|
}; |
|
|
|
var asinhy = function(x) { |
|
var y = Math.abs(x); |
|
y = log1py(y * (1 + y / (hypot(1, y) + 1))); |
|
|
|
return x < 0 ? -y : y; |
|
}; |
|
|
|
var gatg = function(pp, B) { |
|
var cos_2B = 2 * Math.cos(2 * B); |
|
var i = pp.length - 1; |
|
var h1 = pp[i]; |
|
var h2 = 0; |
|
var h; |
|
|
|
while (--i >= 0) { |
|
h = -h2 + cos_2B * h1 + pp[i]; |
|
h2 = h1; |
|
h1 = h; |
|
} |
|
|
|
return (B + h * Math.sin(2 * B)); |
|
}; |
|
|
|
var clens = function(pp, arg_r) { |
|
var r = 2 * Math.cos(arg_r); |
|
var i = pp.length - 1; |
|
var hr1 = pp[i]; |
|
var hr2 = 0; |
|
var hr; |
|
|
|
while (--i >= 0) { |
|
hr = -hr2 + r * hr1 + pp[i]; |
|
hr2 = hr1; |
|
hr1 = hr; |
|
} |
|
|
|
return Math.sin(arg_r) * hr; |
|
}; |
|
|
|
var cosh = function(x) { |
|
var r = Math.exp(x); |
|
r = (r + 1 / r) / 2; |
|
return r; |
|
}; |
|
|
|
var clens_cmplx = function(pp, arg_r, arg_i) { |
|
var sin_arg_r = Math.sin(arg_r); |
|
var cos_arg_r = Math.cos(arg_r); |
|
var sinh_arg_i = sinh(arg_i); |
|
var cosh_arg_i = cosh(arg_i); |
|
var r = 2 * cos_arg_r * cosh_arg_i; |
|
var i = -2 * sin_arg_r * sinh_arg_i; |
|
var j = pp.length - 1; |
|
var hr = pp[j]; |
|
var hi1 = 0; |
|
var hr1 = 0; |
|
var hi = 0; |
|
var hr2; |
|
var hi2; |
|
|
|
while (--j >= 0) { |
|
hr2 = hr1; |
|
hi2 = hi1; |
|
hr1 = hr; |
|
hi1 = hi; |
|
hr = -hr2 + r * hr1 - i * hi1 + pp[j]; |
|
hi = -hi2 + i * hr1 + r * hi1; |
|
} |
|
|
|
r = sin_arg_r * cosh_arg_i; |
|
i = cos_arg_r * sinh_arg_i; |
|
|
|
return [r * hr - i * hi, r * hi + i * hr]; |
|
}; |
|
|
|
// Heavily based on this etmerc projection implementation |
|
// https://github.com/mbloch/mapshaper-proj/blob/master/src/projections/etmerc.js |
|
|
|
function init$3() { |
|
if (this.es === undefined || this.es <= 0) { |
|
throw new Error('incorrect elliptical usage'); |
|
} |
|
|
|
this.x0 = this.x0 !== undefined ? this.x0 : 0; |
|
this.y0 = this.y0 !== undefined ? this.y0 : 0; |
|
this.long0 = this.long0 !== undefined ? this.long0 : 0; |
|
this.lat0 = this.lat0 !== undefined ? this.lat0 : 0; |
|
|
|
this.cgb = []; |
|
this.cbg = []; |
|
this.utg = []; |
|
this.gtu = []; |
|
|
|
var f = this.es / (1 + Math.sqrt(1 - this.es)); |
|
var n = f / (2 - f); |
|
var np = n; |
|
|
|
this.cgb[0] = n * (2 + n * (-2 / 3 + n * (-2 + n * (116 / 45 + n * (26 / 45 + n * (-2854 / 675 )))))); |
|
this.cbg[0] = n * (-2 + n * ( 2 / 3 + n * ( 4 / 3 + n * (-82 / 45 + n * (32 / 45 + n * (4642 / 4725)))))); |
|
|
|
np = np * n; |
|
this.cgb[1] = np * (7 / 3 + n * (-8 / 5 + n * (-227 / 45 + n * (2704 / 315 + n * (2323 / 945))))); |
|
this.cbg[1] = np * (5 / 3 + n * (-16 / 15 + n * ( -13 / 9 + n * (904 / 315 + n * (-1522 / 945))))); |
|
|
|
np = np * n; |
|
this.cgb[2] = np * (56 / 15 + n * (-136 / 35 + n * (-1262 / 105 + n * (73814 / 2835)))); |
|
this.cbg[2] = np * (-26 / 15 + n * (34 / 21 + n * (8 / 5 + n * (-12686 / 2835)))); |
|
|
|
np = np * n; |
|
this.cgb[3] = np * (4279 / 630 + n * (-332 / 35 + n * (-399572 / 14175))); |
|
this.cbg[3] = np * (1237 / 630 + n * (-12 / 5 + n * ( -24832 / 14175))); |
|
|
|
np = np * n; |
|
this.cgb[4] = np * (4174 / 315 + n * (-144838 / 6237)); |
|
this.cbg[4] = np * (-734 / 315 + n * (109598 / 31185)); |
|
|
|
np = np * n; |
|
this.cgb[5] = np * (601676 / 22275); |
|
this.cbg[5] = np * (444337 / 155925); |
|
|
|
np = Math.pow(n, 2); |
|
this.Qn = this.k0 / (1 + n) * (1 + np * (1 / 4 + np * (1 / 64 + np / 256))); |
|
|
|
this.utg[0] = n * (-0.5 + n * ( 2 / 3 + n * (-37 / 96 + n * ( 1 / 360 + n * (81 / 512 + n * (-96199 / 604800)))))); |
|
this.gtu[0] = n * (0.5 + n * (-2 / 3 + n * (5 / 16 + n * (41 / 180 + n * (-127 / 288 + n * (7891 / 37800)))))); |
|
|
|
this.utg[1] = np * (-1 / 48 + n * (-1 / 15 + n * (437 / 1440 + n * (-46 / 105 + n * (1118711 / 3870720))))); |
|
this.gtu[1] = np * (13 / 48 + n * (-3 / 5 + n * (557 / 1440 + n * (281 / 630 + n * (-1983433 / 1935360))))); |
|
|
|
np = np * n; |
|
this.utg[2] = np * (-17 / 480 + n * (37 / 840 + n * (209 / 4480 + n * (-5569 / 90720 )))); |
|
this.gtu[2] = np * (61 / 240 + n * (-103 / 140 + n * (15061 / 26880 + n * (167603 / 181440)))); |
|
|
|
np = np * n; |
|
this.utg[3] = np * (-4397 / 161280 + n * (11 / 504 + n * (830251 / 7257600))); |
|
this.gtu[3] = np * (49561 / 161280 + n * (-179 / 168 + n * (6601661 / 7257600))); |
|
|
|
np = np * n; |
|
this.utg[4] = np * (-4583 / 161280 + n * (108847 / 3991680)); |
|
this.gtu[4] = np * (34729 / 80640 + n * (-3418889 / 1995840)); |
|
|
|
np = np * n; |
|
this.utg[5] = np * (-20648693 / 638668800); |
|
this.gtu[5] = np * (212378941 / 319334400); |
|
|
|
var Z = gatg(this.cbg, this.lat0); |
|
this.Zb = -this.Qn * (Z + clens(this.gtu, 2 * Z)); |
|
} |
|
|
|
function forward$3(p) { |
|
var Ce = adjust_lon(p.x - this.long0); |
|
var Cn = p.y; |
|
|
|
Cn = gatg(this.cbg, Cn); |
|
var sin_Cn = Math.sin(Cn); |
|
var cos_Cn = Math.cos(Cn); |
|
var sin_Ce = Math.sin(Ce); |
|
var cos_Ce = Math.cos(Ce); |
|
|
|
Cn = Math.atan2(sin_Cn, cos_Ce * cos_Cn); |
|
Ce = Math.atan2(sin_Ce * cos_Cn, hypot(sin_Cn, cos_Cn * cos_Ce)); |
|
Ce = asinhy(Math.tan(Ce)); |
|
|
|
var tmp = clens_cmplx(this.gtu, 2 * Cn, 2 * Ce); |
|
|
|
Cn = Cn + tmp[0]; |
|
Ce = Ce + tmp[1]; |
|
|
|
var x; |
|
var y; |
|
|
|
if (Math.abs(Ce) <= 2.623395162778) { |
|
x = this.a * (this.Qn * Ce) + this.x0; |
|
y = this.a * (this.Qn * Cn + this.Zb) + this.y0; |
|
} |
|
else { |
|
x = Infinity; |
|
y = Infinity; |
|
} |
|
|
|
p.x = x; |
|
p.y = y; |
|
|
|
return p; |
|
} |
|
|
|
function inverse$3(p) { |
|
var Ce = (p.x - this.x0) * (1 / this.a); |
|
var Cn = (p.y - this.y0) * (1 / this.a); |
|
|
|
Cn = (Cn - this.Zb) / this.Qn; |
|
Ce = Ce / this.Qn; |
|
|
|
var lon; |
|
var lat; |
|
|
|
if (Math.abs(Ce) <= 2.623395162778) { |
|
var tmp = clens_cmplx(this.utg, 2 * Cn, 2 * Ce); |
|
|
|
Cn = Cn + tmp[0]; |
|
Ce = Ce + tmp[1]; |
|
Ce = Math.atan(sinh(Ce)); |
|
|
|
var sin_Cn = Math.sin(Cn); |
|
var cos_Cn = Math.cos(Cn); |
|
var sin_Ce = Math.sin(Ce); |
|
var cos_Ce = Math.cos(Ce); |
|
|
|
Cn = Math.atan2(sin_Cn * cos_Ce, hypot(sin_Ce, cos_Ce * cos_Cn)); |
|
Ce = Math.atan2(sin_Ce, cos_Ce * cos_Cn); |
|
|
|
lon = adjust_lon(Ce + this.long0); |
|
lat = gatg(this.cgb, Cn); |
|
} |
|
else { |
|
lon = Infinity; |
|
lat = Infinity; |
|
} |
|
|
|
p.x = lon; |
|
p.y = lat; |
|
|
|
return p; |
|
} |
|
|
|
var names$4 = ["Extended_Transverse_Mercator", "Extended Transverse Mercator", "etmerc"]; |
|
var etmerc = { |
|
init: init$3, |
|
forward: forward$3, |
|
inverse: inverse$3, |
|
names: names$4 |
|
}; |
|
|
|
var adjust_zone = function(zone, lon) { |
|
if (zone === undefined) { |
|
zone = Math.floor((adjust_lon(lon) + Math.PI) * 30 / Math.PI) + 1; |
|
|
|
if (zone < 0) { |
|
return 0; |
|
} else if (zone > 60) { |
|
return 60; |
|
} |
|
} |
|
return zone; |
|
}; |
|
|
|
var dependsOn = 'etmerc'; |
|
function init$4() { |
|
var zone = adjust_zone(this.zone, this.long0); |
|
if (zone === undefined) { |
|
throw new Error('unknown utm zone'); |
|
} |
|
this.lat0 = 0; |
|
this.long0 = ((6 * Math.abs(zone)) - 183) * D2R; |
|
this.x0 = 500000; |
|
this.y0 = this.utmSouth ? 10000000 : 0; |
|
this.k0 = 0.9996; |
|
|
|
etmerc.init.apply(this); |
|
this.forward = etmerc.forward; |
|
this.inverse = etmerc.inverse; |
|
} |
|
|
|
var names$5 = ["Universal Transverse Mercator System", "utm"]; |
|
var utm = { |
|
init: init$4, |
|
names: names$5, |
|
dependsOn: dependsOn |
|
}; |
|
|
|
var srat = function(esinp, exp) { |
|
return (Math.pow((1 - esinp) / (1 + esinp), exp)); |
|
}; |
|
|
|
var MAX_ITER$1 = 20; |
|
function init$6() { |
|
var sphi = Math.sin(this.lat0); |
|
var cphi = Math.cos(this.lat0); |
|
cphi *= cphi; |
|
this.rc = Math.sqrt(1 - this.es) / (1 - this.es * sphi * sphi); |
|
this.C = Math.sqrt(1 + this.es * cphi * cphi / (1 - this.es)); |
|
this.phic0 = Math.asin(sphi / this.C); |
|
this.ratexp = 0.5 * this.C * this.e; |
|
this.K = Math.tan(0.5 * this.phic0 + FORTPI) / (Math.pow(Math.tan(0.5 * this.lat0 + FORTPI), this.C) * srat(this.e * sphi, this.ratexp)); |
|
} |
|
|
|
function forward$5(p) { |
|
var lon = p.x; |
|
var lat = p.y; |
|
|
|
p.y = 2 * Math.atan(this.K * Math.pow(Math.tan(0.5 * lat + FORTPI), this.C) * srat(this.e * Math.sin(lat), this.ratexp)) - HALF_PI; |
|
p.x = this.C * lon; |
|
return p; |
|
} |
|
|
|
function inverse$5(p) { |
|
var DEL_TOL = 1e-14; |
|
var lon = p.x / this.C; |
|
var lat = p.y; |
|
var num = Math.pow(Math.tan(0.5 * lat + FORTPI) / this.K, 1 / this.C); |
|
for (var i = MAX_ITER$1; i > 0; --i) { |
|
lat = 2 * Math.atan(num * srat(this.e * Math.sin(p.y), - 0.5 * this.e)) - HALF_PI; |
|
if (Math.abs(lat - p.y) < DEL_TOL) { |
|
break; |
|
} |
|
p.y = lat; |
|
} |
|
/* convergence failed */ |
|
if (!i) { |
|
return null; |
|
} |
|
p.x = lon; |
|
p.y = lat; |
|
return p; |
|
} |
|
|
|
var names$7 = ["gauss"]; |
|
var gauss = { |
|
init: init$6, |
|
forward: forward$5, |
|
inverse: inverse$5, |
|
names: names$7 |
|
}; |
|
|
|
function init$5() { |
|
gauss.init.apply(this); |
|
if (!this.rc) { |
|
return; |
|
} |
|
this.sinc0 = Math.sin(this.phic0); |
|
this.cosc0 = Math.cos(this.phic0); |
|
this.R2 = 2 * this.rc; |
|
if (!this.title) { |
|
this.title = "Oblique Stereographic Alternative"; |
|
} |
|
} |
|
|
|
function forward$4(p) { |
|
var sinc, cosc, cosl, k; |
|
p.x = adjust_lon(p.x - this.long0); |
|
gauss.forward.apply(this, [p]); |
|
sinc = Math.sin(p.y); |
|
cosc = Math.cos(p.y); |
|
cosl = Math.cos(p.x); |
|
k = this.k0 * this.R2 / (1 + this.sinc0 * sinc + this.cosc0 * cosc * cosl); |
|
p.x = k * cosc * Math.sin(p.x); |
|
p.y = k * (this.cosc0 * sinc - this.sinc0 * cosc * cosl); |
|
p.x = this.a * p.x + this.x0; |
|
p.y = this.a * p.y + this.y0; |
|
return p; |
|
} |
|
|
|
function inverse$4(p) { |
|
var sinc, cosc, lon, lat, rho; |
|
p.x = (p.x - this.x0) / this.a; |
|
p.y = (p.y - this.y0) / this.a; |
|
|
|
p.x /= this.k0; |
|
p.y /= this.k0; |
|
if ((rho = Math.sqrt(p.x * p.x + p.y * p.y))) { |
|
var c = 2 * Math.atan2(rho, this.R2); |
|
sinc = Math.sin(c); |
|
cosc = Math.cos(c); |
|
lat = Math.asin(cosc * this.sinc0 + p.y * sinc * this.cosc0 / rho); |
|
lon = Math.atan2(p.x * sinc, rho * this.cosc0 * cosc - p.y * this.sinc0 * sinc); |
|
} |
|
else { |
|
lat = this.phic0; |
|
lon = 0; |
|
} |
|
|
|
p.x = lon; |
|
p.y = lat; |
|
gauss.inverse.apply(this, [p]); |
|
p.x = adjust_lon(p.x + this.long0); |
|
return p; |
|
} |
|
|
|
var names$6 = ["Stereographic_North_Pole", "Oblique_Stereographic", "Polar_Stereographic", "sterea","Oblique Stereographic Alternative","Double_Stereographic"]; |
|
var sterea = { |
|
init: init$5, |
|
forward: forward$4, |
|
inverse: inverse$4, |
|
names: names$6 |
|
}; |
|
|
|
function ssfn_(phit, sinphi, eccen) { |
|
sinphi *= eccen; |
|
return (Math.tan(0.5 * (HALF_PI + phit)) * Math.pow((1 - sinphi) / (1 + sinphi), 0.5 * eccen)); |
|
} |
|
|
|
function init$7() { |
|
this.coslat0 = Math.cos(this.lat0); |
|
this.sinlat0 = Math.sin(this.lat0); |
|
if (this.sphere) { |
|
if (this.k0 === 1 && !isNaN(this.lat_ts) && Math.abs(this.coslat0) <= EPSLN) { |
|
this.k0 = 0.5 * (1 + sign(this.lat0) * Math.sin(this.lat_ts)); |
|
} |
|
} |
|
else { |
|
if (Math.abs(this.coslat0) <= EPSLN) { |
|
if (this.lat0 > 0) { |
|
//North pole |
|
//trace('stere:north pole'); |
|
this.con = 1; |
|
} |
|
else { |
|
//South pole |
|
//trace('stere:south pole'); |
|
this.con = -1; |
|
} |
|
} |
|
this.cons = Math.sqrt(Math.pow(1 + this.e, 1 + this.e) * Math.pow(1 - this.e, 1 - this.e)); |
|
if (this.k0 === 1 && !isNaN(this.lat_ts) && Math.abs(this.coslat0) <= EPSLN) { |
|
this.k0 = 0.5 * this.cons * msfnz(this.e, Math.sin(this.lat_ts), Math.cos(this.lat_ts)) / tsfnz(this.e, this.con * this.lat_ts, this.con * Math.sin(this.lat_ts)); |
|
} |
|
this.ms1 = msfnz(this.e, this.sinlat0, this.coslat0); |
|
this.X0 = 2 * Math.atan(this.ssfn_(this.lat0, this.sinlat0, this.e)) - HALF_PI; |
|
this.cosX0 = Math.cos(this.X0); |
|
this.sinX0 = Math.sin(this.X0); |
|
} |
|
} |
|
|
|
// Stereographic forward equations--mapping lat,long to x,y |
|
function forward$6(p) { |
|
var lon = p.x; |
|
var lat = p.y; |
|
var sinlat = Math.sin(lat); |
|
var coslat = Math.cos(lat); |
|
var A, X, sinX, cosX, ts, rh; |
|
var dlon = adjust_lon(lon - this.long0); |
|
|
|
if (Math.abs(Math.abs(lon - this.long0) - Math.PI) <= EPSLN && Math.abs(lat + this.lat0) <= EPSLN) { |
|
//case of the origine point |
|
//trace('stere:this is the origin point'); |
|
p.x = NaN; |
|
p.y = NaN; |
|
return p; |
|
} |
|
if (this.sphere) { |
|
//trace('stere:sphere case'); |
|
A = 2 * this.k0 / (1 + this.sinlat0 * sinlat + this.coslat0 * coslat * Math.cos(dlon)); |
|
p.x = this.a * A * coslat * Math.sin(dlon) + this.x0; |
|
p.y = this.a * A * (this.coslat0 * sinlat - this.sinlat0 * coslat * Math.cos(dlon)) + this.y0; |
|
return p; |
|
} |
|
else { |
|
X = 2 * Math.atan(this.ssfn_(lat, sinlat, this.e)) - HALF_PI; |
|
cosX = Math.cos(X); |
|
sinX = Math.sin(X); |
|
if (Math.abs(this.coslat0) <= EPSLN) { |
|
ts = tsfnz(this.e, lat * this.con, this.con * sinlat); |
|
rh = 2 * this.a * this.k0 * ts / this.cons; |
|
p.x = this.x0 + rh * Math.sin(lon - this.long0); |
|
p.y = this.y0 - this.con * rh * Math.cos(lon - this.long0); |
|
//trace(p.toString()); |
|
return p; |
|
} |
|
else if (Math.abs(this.sinlat0) < EPSLN) { |
|
//Eq |
|
//trace('stere:equateur'); |
|
A = 2 * this.a * this.k0 / (1 + cosX * Math.cos(dlon)); |
|
p.y = A * sinX; |
|
} |
|
else { |
|
//other case |
|
//trace('stere:normal case'); |
|
A = 2 * this.a * this.k0 * this.ms1 / (this.cosX0 * (1 + this.sinX0 * sinX + this.cosX0 * cosX * Math.cos(dlon))); |
|
p.y = A * (this.cosX0 * sinX - this.sinX0 * cosX * Math.cos(dlon)) + this.y0; |
|
} |
|
p.x = A * cosX * Math.sin(dlon) + this.x0; |
|
} |
|
//trace(p.toString()); |
|
return p; |
|
} |
|
|
|
//* Stereographic inverse equations--mapping x,y to lat/long |
|
function inverse$6(p) { |
|
p.x -= this.x0; |
|
p.y -= this.y0; |
|
var lon, lat, ts, ce, Chi; |
|
var rh = Math.sqrt(p.x * p.x + p.y * p.y); |
|
if (this.sphere) { |
|
var c = 2 * Math.atan(rh / (2 * this.a * this.k0)); |
|
lon = this.long0; |
|
lat = this.lat0; |
|
if (rh <= EPSLN) { |
|
p.x = lon; |
|
p.y = lat; |
|
return p; |
|
} |
|
lat = Math.asin(Math.cos(c) * this.sinlat0 + p.y * Math.sin(c) * this.coslat0 / rh); |
|
if (Math.abs(this.coslat0) < EPSLN) { |
|
if (this.lat0 > 0) { |
|
lon = adjust_lon(this.long0 + Math.atan2(p.x, - 1 * p.y)); |
|
} |
|
else { |
|
lon = adjust_lon(this.long0 + Math.atan2(p.x, p.y)); |
|
} |
|
} |
|
else { |
|
lon = adjust_lon(this.long0 + Math.atan2(p.x * Math.sin(c), rh * this.coslat0 * Math.cos(c) - p.y * this.sinlat0 * Math.sin(c))); |
|
} |
|
p.x = lon; |
|
p.y = lat; |
|
return p; |
|
} |
|
else { |
|
if (Math.abs(this.coslat0) <= EPSLN) { |
|
if (rh <= EPSLN) { |
|
lat = this.lat0; |
|
lon = this.long0; |
|
p.x = lon; |
|
p.y = lat; |
|
//trace(p.toString()); |
|
return p; |
|
} |
|
p.x *= this.con; |
|
p.y *= this.con; |
|
ts = rh * this.cons / (2 * this.a * this.k0); |
|
lat = this.con * phi2z(this.e, ts); |
|
lon = this.con * adjust_lon(this.con * this.long0 + Math.atan2(p.x, - 1 * p.y)); |
|
} |
|
else { |
|
ce = 2 * Math.atan(rh * this.cosX0 / (2 * this.a * this.k0 * this.ms1)); |
|
lon = this.long0; |
|
if (rh <= EPSLN) { |
|
Chi = this.X0; |
|
} |
|
else { |
|
Chi = Math.asin(Math.cos(ce) * this.sinX0 + p.y * Math.sin(ce) * this.cosX0 / rh); |
|
lon = adjust_lon(this.long0 + Math.atan2(p.x * Math.sin(ce), rh * this.cosX0 * Math.cos(ce) - p.y * this.sinX0 * Math.sin(ce))); |
|
} |
|
lat = -1 * phi2z(this.e, Math.tan(0.5 * (HALF_PI + Chi))); |
|
} |
|
} |
|
p.x = lon; |
|
p.y = lat; |
|
|
|
//trace(p.toString()); |
|
return p; |
|
|
|
} |
|
|
|
var names$8 = ["stere", "Stereographic_South_Pole", "Polar Stereographic (variant B)"]; |
|
var stere = { |
|
init: init$7, |
|
forward: forward$6, |
|
inverse: inverse$6, |
|
names: names$8, |
|
ssfn_: ssfn_ |
|
}; |
|
|
|
/* |
|
references: |
|
Formules et constantes pour le Calcul pour la |
|
projection cylindrique conforme à axe oblique et pour la transformation entre |
|
des systèmes de référence. |
|
http://www.swisstopo.admin.ch/internet/swisstopo/fr/home/topics/survey/sys/refsys/switzerland.parsysrelated1.31216.downloadList.77004.DownloadFile.tmp/swissprojectionfr.pdf |
|
*/ |
|
|
|
function init$8() { |
|
var phy0 = this.lat0; |
|
this.lambda0 = this.long0; |
|
var sinPhy0 = Math.sin(phy0); |
|
var semiMajorAxis = this.a; |
|
var invF = this.rf; |
|
var flattening = 1 / invF; |
|
var e2 = 2 * flattening - Math.pow(flattening, 2); |
|
var e = this.e = Math.sqrt(e2); |
|
this.R = this.k0 * semiMajorAxis * Math.sqrt(1 - e2) / (1 - e2 * Math.pow(sinPhy0, 2)); |
|
this.alpha = Math.sqrt(1 + e2 / (1 - e2) * Math.pow(Math.cos(phy0), 4)); |
|
this.b0 = Math.asin(sinPhy0 / this.alpha); |
|
var k1 = Math.log(Math.tan(Math.PI / 4 + this.b0 / 2)); |
|
var k2 = Math.log(Math.tan(Math.PI / 4 + phy0 / 2)); |
|
var k3 = Math.log((1 + e * sinPhy0) / (1 - e * sinPhy0)); |
|
this.K = k1 - this.alpha * k2 + this.alpha * e / 2 * k3; |
|
} |
|
|
|
function forward$7(p) { |
|
var Sa1 = Math.log(Math.tan(Math.PI / 4 - p.y / 2)); |
|
var Sa2 = this.e / 2 * Math.log((1 + this.e * Math.sin(p.y)) / (1 - this.e * Math.sin(p.y))); |
|
var S = -this.alpha * (Sa1 + Sa2) + this.K; |
|
|
|
// spheric latitude |
|
var b = 2 * (Math.atan(Math.exp(S)) - Math.PI / 4); |
|
|
|
// spheric longitude |
|
var I = this.alpha * (p.x - this.lambda0); |
|
|
|
// psoeudo equatorial rotation |
|
var rotI = Math.atan(Math.sin(I) / (Math.sin(this.b0) * Math.tan(b) + Math.cos(this.b0) * Math.cos(I))); |
|
|
|
var rotB = Math.asin(Math.cos(this.b0) * Math.sin(b) - Math.sin(this.b0) * Math.cos(b) * Math.cos(I)); |
|
|
|
p.y = this.R / 2 * Math.log((1 + Math.sin(rotB)) / (1 - Math.sin(rotB))) + this.y0; |
|
p.x = this.R * rotI + this.x0; |
|
return p; |
|
} |
|
|
|
function inverse$7(p) { |
|
var Y = p.x - this.x0; |
|
var X = p.y - this.y0; |
|
|
|
var rotI = Y / this.R; |
|
var rotB = 2 * (Math.atan(Math.exp(X / this.R)) - Math.PI / 4); |
|
|
|
var b = Math.asin(Math.cos(this.b0) * Math.sin(rotB) + Math.sin(this.b0) * Math.cos(rotB) * Math.cos(rotI)); |
|
var I = Math.atan(Math.sin(rotI) / (Math.cos(this.b0) * Math.cos(rotI) - Math.sin(this.b0) * Math.tan(rotB))); |
|
|
|
var lambda = this.lambda0 + I / this.alpha; |
|
|
|
var S = 0; |
|
var phy = b; |
|
var prevPhy = -1000; |
|
var iteration = 0; |
|
while (Math.abs(phy - prevPhy) > 0.0000001) { |
|
if (++iteration > 20) { |
|
//...reportError("omercFwdInfinity"); |
|
return; |
|
} |
|
//S = Math.log(Math.tan(Math.PI / 4 + phy / 2)); |
|
S = 1 / this.alpha * (Math.log(Math.tan(Math.PI / 4 + b / 2)) - this.K) + this.e * Math.log(Math.tan(Math.PI / 4 + Math.asin(this.e * Math.sin(phy)) / 2)); |
|
prevPhy = phy; |
|
phy = 2 * Math.atan(Math.exp(S)) - Math.PI / 2; |
|
} |
|
|
|
p.x = lambda; |
|
p.y = phy; |
|
return p; |
|
} |
|
|
|
var names$9 = ["somerc"]; |
|
var somerc = { |
|
init: init$8, |
|
forward: forward$7, |
|
inverse: inverse$7, |
|
names: names$9 |
|
}; |
|
|
|
/* Initialize the Oblique Mercator projection |
|
------------------------------------------*/ |
|
function init$9() { |
|
this.no_off = this.no_off || false; |
|
this.no_rot = this.no_rot || false; |
|
|
|
if (isNaN(this.k0)) { |
|
this.k0 = 1; |
|
} |
|
var sinlat = Math.sin(this.lat0); |
|
var coslat = Math.cos(this.lat0); |
|
var con = this.e * sinlat; |
|
|
|
this.bl = Math.sqrt(1 + this.es / (1 - this.es) * Math.pow(coslat, 4)); |
|
this.al = this.a * this.bl * this.k0 * Math.sqrt(1 - this.es) / (1 - con * con); |
|
var t0 = tsfnz(this.e, this.lat0, sinlat); |
|
var dl = this.bl / coslat * Math.sqrt((1 - this.es) / (1 - con * con)); |
|
if (dl * dl < 1) { |
|
dl = 1; |
|
} |
|
var fl; |
|
var gl; |
|
if (!isNaN(this.longc)) { |
|
//Central point and azimuth method |
|
|
|
if (this.lat0 >= 0) { |
|
fl = dl + Math.sqrt(dl * dl - 1); |
|
} |
|
else { |
|
fl = dl - Math.sqrt(dl * dl - 1); |
|
} |
|
this.el = fl * Math.pow(t0, this.bl); |
|
gl = 0.5 * (fl - 1 / fl); |
|
this.gamma0 = Math.asin(Math.sin(this.alpha) / dl); |
|
this.long0 = this.longc - Math.asin(gl * Math.tan(this.gamma0)) / this.bl; |
|
|
|
} |
|
else { |
|
//2 points method |
|
var t1 = tsfnz(this.e, this.lat1, Math.sin(this.lat1)); |
|
var t2 = tsfnz(this.e, this.lat2, Math.sin(this.lat2)); |
|
if (this.lat0 >= 0) { |
|
this.el = (dl + Math.sqrt(dl * dl - 1)) * Math.pow(t0, this.bl); |
|
} |
|
else { |
|
this.el = (dl - Math.sqrt(dl * dl - 1)) * Math.pow(t0, this.bl); |
|
} |
|
var hl = Math.pow(t1, this.bl); |
|
var ll = Math.pow(t2, this.bl); |
|
fl = this.el / hl; |
|
gl = 0.5 * (fl - 1 / fl); |
|
var jl = (this.el * this.el - ll * hl) / (this.el * this.el + ll * hl); |
|
var pl = (ll - hl) / (ll + hl); |
|
var dlon12 = adjust_lon(this.long1 - this.long2); |
|
this.long0 = 0.5 * (this.long1 + this.long2) - Math.atan(jl * Math.tan(0.5 * this.bl * (dlon12)) / pl) / this.bl; |
|
this.long0 = adjust_lon(this.long0); |
|
var dlon10 = adjust_lon(this.long1 - this.long0); |
|
this.gamma0 = Math.atan(Math.sin(this.bl * (dlon10)) / gl); |
|
this.alpha = Math.asin(dl * Math.sin(this.gamma0)); |
|
} |
|
|
|
if (this.no_off) { |
|
this.uc = 0; |
|
} |
|
else { |
|
if (this.lat0 >= 0) { |
|
this.uc = this.al / this.bl * Math.atan2(Math.sqrt(dl * dl - 1), Math.cos(this.alpha)); |
|
} |
|
else { |
|
this.uc = -1 * this.al / this.bl * Math.atan2(Math.sqrt(dl * dl - 1), Math.cos(this.alpha)); |
|
} |
|
} |
|
|
|
} |
|
|
|
/* Oblique Mercator forward equations--mapping lat,long to x,y |
|
----------------------------------------------------------*/ |
|
function forward$8(p) { |
|
var lon = p.x; |
|
var lat = p.y; |
|
var dlon = adjust_lon(lon - this.long0); |
|
var us, vs; |
|
var con; |
|
if (Math.abs(Math.abs(lat) - HALF_PI) <= EPSLN) { |
|
if (lat > 0) { |
|
con = -1; |
|
} |
|
else { |
|
con = 1; |
|
} |
|
vs = this.al / this.bl * Math.log(Math.tan(FORTPI + con * this.gamma0 * 0.5)); |
|
us = -1 * con * HALF_PI * this.al / this.bl; |
|
} |
|
else { |
|
var t = tsfnz(this.e, lat, Math.sin(lat)); |
|
var ql = this.el / Math.pow(t, this.bl); |
|
var sl = 0.5 * (ql - 1 / ql); |
|
var tl = 0.5 * (ql + 1 / ql); |
|
var vl = Math.sin(this.bl * (dlon)); |
|
var ul = (sl * Math.sin(this.gamma0) - vl * Math.cos(this.gamma0)) / tl; |
|
if (Math.abs(Math.abs(ul) - 1) <= EPSLN) { |
|
vs = Number.POSITIVE_INFINITY; |
|
} |
|
else { |
|
vs = 0.5 * this.al * Math.log((1 - ul) / (1 + ul)) / this.bl; |
|
} |
|
if (Math.abs(Math.cos(this.bl * (dlon))) <= EPSLN) { |
|
us = this.al * this.bl * (dlon); |
|
} |
|
else { |
|
us = this.al * Math.atan2(sl * Math.cos(this.gamma0) + vl * Math.sin(this.gamma0), Math.cos(this.bl * dlon)) / this.bl; |
|
} |
|
} |
|
|
|
if (this.no_rot) { |
|
p.x = this.x0 + us; |
|
p.y = this.y0 + vs; |
|
} |
|
else { |
|
|
|
us -= this.uc; |
|
p.x = this.x0 + vs * Math.cos(this.alpha) + us * Math.sin(this.alpha); |
|
p.y = this.y0 + us * Math.cos(this.alpha) - vs * Math.sin(this.alpha); |
|
} |
|
return p; |
|
} |
|
|
|
function inverse$8(p) { |
|
var us, vs; |
|
if (this.no_rot) { |
|
vs = p.y - this.y0; |
|
us = p.x - this.x0; |
|
} |
|
else { |
|
vs = (p.x - this.x0) * Math.cos(this.alpha) - (p.y - this.y0) * Math.sin(this.alpha); |
|
us = (p.y - this.y0) * Math.cos(this.alpha) + (p.x - this.x0) * Math.sin(this.alpha); |
|
us += this.uc; |
|
} |
|
var qp = Math.exp(-1 * this.bl * vs / this.al); |
|
var sp = 0.5 * (qp - 1 / qp); |
|
var tp = 0.5 * (qp + 1 / qp); |
|
var vp = Math.sin(this.bl * us / this.al); |
|
var up = (vp * Math.cos(this.gamma0) + sp * Math.sin(this.gamma0)) / tp; |
|
var ts = Math.pow(this.el / Math.sqrt((1 + up) / (1 - up)), 1 / this.bl); |
|
if (Math.abs(up - 1) < EPSLN) { |
|
p.x = this.long0; |
|
p.y = HALF_PI; |
|
} |
|
else if (Math.abs(up + 1) < EPSLN) { |
|
p.x = this.long0; |
|
p.y = -1 * HALF_PI; |
|
} |
|
else { |
|
p.y = phi2z(this.e, ts); |
|
p.x = adjust_lon(this.long0 - Math.atan2(sp * Math.cos(this.gamma0) - vp * Math.sin(this.gamma0), Math.cos(this.bl * us / this.al)) / this.bl); |
|
} |
|
return p; |
|
} |
|
|
|
var names$10 = ["Hotine_Oblique_Mercator", "Hotine Oblique Mercator", "Hotine_Oblique_Mercator_Azimuth_Natural_Origin", "Hotine_Oblique_Mercator_Azimuth_Center", "omerc"]; |
|
var omerc = { |
|
init: init$9, |
|
forward: forward$8, |
|
inverse: inverse$8, |
|
names: names$10 |
|
}; |
|
|
|
function init$10() { |
|
|
|
// array of: r_maj,r_min,lat1,lat2,c_lon,c_lat,false_east,false_north |
|
//double c_lat; /* center latitude */ |
|
//double c_lon; /* center longitude */ |
|
//double lat1; /* first standard parallel */ |
|
//double lat2; /* second standard parallel */ |
|
//double r_maj; /* major axis */ |
|
//double r_min; /* minor axis */ |
|
//double false_east; /* x offset in meters */ |
|
//double false_north; /* y offset in meters */ |
|
|
|
if (!this.lat2) { |
|
this.lat2 = this.lat1; |
|
} //if lat2 is not defined |
|
if (!this.k0) { |
|
this.k0 = 1; |
|
} |
|
this.x0 = this.x0 || 0; |
|
this.y0 = this.y0 || 0; |
|
// Standard Parallels cannot be equal and on opposite sides of the equator |
|
if (Math.abs(this.lat1 + this.lat2) < EPSLN) { |
|
return; |
|
} |
|
|
|
var temp = this.b / this.a; |
|
this.e = Math.sqrt(1 - temp * temp); |
|
|
|
var sin1 = Math.sin(this.lat1); |
|
var cos1 = Math.cos(this.lat1); |
|
var ms1 = msfnz(this.e, sin1, cos1); |
|
var ts1 = tsfnz(this.e, this.lat1, sin1); |
|
|
|
var sin2 = Math.sin(this.lat2); |
|
var cos2 = Math.cos(this.lat2); |
|
var ms2 = msfnz(this.e, sin2, cos2); |
|
var ts2 = tsfnz(this.e, this.lat2, sin2); |
|
|
|
var ts0 = tsfnz(this.e, this.lat0, Math.sin(this.lat0)); |
|
|
|
if (Math.abs(this.lat1 - this.lat2) > EPSLN) { |
|
this.ns = Math.log(ms1 / ms2) / Math.log(ts1 / ts2); |
|
} |
|
else { |
|
this.ns = sin1; |
|
} |
|
if (isNaN(this.ns)) { |
|
this.ns = sin1; |
|
} |
|
this.f0 = ms1 / (this.ns * Math.pow(ts1, this.ns)); |
|
this.rh = this.a * this.f0 * Math.pow(ts0, this.ns); |
|
if (!this.title) { |
|
this.title = "Lambert Conformal Conic"; |
|
} |
|
} |
|
|
|
// Lambert Conformal conic forward equations--mapping lat,long to x,y |
|
// ----------------------------------------------------------------- |
|
function forward$9(p) { |
|
|
|
var lon = p.x; |
|
var lat = p.y; |
|
|
|
// singular cases : |
|
if (Math.abs(2 * Math.abs(lat) - Math.PI) <= EPSLN) { |
|
lat = sign(lat) * (HALF_PI - 2 * EPSLN); |
|
} |
|
|
|
var con = Math.abs(Math.abs(lat) - HALF_PI); |
|
var ts, rh1; |
|
if (con > EPSLN) { |
|
ts = tsfnz(this.e, lat, Math.sin(lat)); |
|
rh1 = this.a * this.f0 * Math.pow(ts, this.ns); |
|
} |
|
else { |
|
con = lat * this.ns; |
|
if (con <= 0) { |
|
return null; |
|
} |
|
rh1 = 0; |
|
} |
|
var theta = this.ns * adjust_lon(lon - this.long0); |
|
p.x = this.k0 * (rh1 * Math.sin(theta)) + this.x0; |
|
p.y = this.k0 * (this.rh - rh1 * Math.cos(theta)) + this.y0; |
|
|
|
return p; |
|
} |
|
|
|
// Lambert Conformal Conic inverse equations--mapping x,y to lat/long |
|
// ----------------------------------------------------------------- |
|
function inverse$9(p) { |
|
|
|
var rh1, con, ts; |
|
var lat, lon; |
|
var x = (p.x - this.x0) / this.k0; |
|
var y = (this.rh - (p.y - this.y0) / this.k0); |
|
if (this.ns > 0) { |
|
rh1 = Math.sqrt(x * x + y * y); |
|
con = 1; |
|
} |
|
else { |
|
rh1 = -Math.sqrt(x * x + y * y); |
|
con = -1; |
|
} |
|
var theta = 0; |
|
if (rh1 !== 0) { |
|
theta = Math.atan2((con * x), (con * y)); |
|
} |
|
if ((rh1 !== 0) || (this.ns > 0)) { |
|
con = 1 / this.ns; |
|
ts = Math.pow((rh1 / (this.a * this.f0)), con); |
|
lat = phi2z(this.e, ts); |
|
if (lat === -9999) { |
|
return null; |
|
} |
|
} |
|
else { |
|
lat = -HALF_PI; |
|
} |
|
lon = adjust_lon(theta / this.ns + this.long0); |
|
|
|
p.x = lon; |
|
p.y = lat; |
|
return p; |
|
} |
|
|
|
var names$11 = ["Lambert Tangential Conformal Conic Projection", "Lambert_Conformal_Conic", "Lambert_Conformal_Conic_2SP", "lcc"]; |
|
var lcc = { |
|
init: init$10, |
|
forward: forward$9, |
|
inverse: inverse$9, |
|
names: names$11 |
|
}; |
|
|
|
function init$11() { |
|
this.a = 6377397.155; |
|
this.es = 0.006674372230614; |
|
this.e = Math.sqrt(this.es); |
|
if (!this.lat0) { |
|
this.lat0 = 0.863937979737193; |
|
} |
|
if (!this.long0) { |
|
this.long0 = 0.7417649320975901 - 0.308341501185665; |
|
} |
|
/* if scale not set default to 0.9999 */ |
|
if (!this.k0) { |
|
this.k0 = 0.9999; |
|
} |
|
this.s45 = 0.785398163397448; /* 45 */ |
|
this.s90 = 2 * this.s45; |
|
this.fi0 = this.lat0; |
|
this.e2 = this.es; |
|
this.e = Math.sqrt(this.e2); |
|
this.alfa = Math.sqrt(1 + (this.e2 * Math.pow(Math.cos(this.fi0), 4)) / (1 - this.e2)); |
|
this.uq = 1.04216856380474; |
|
this.u0 = Math.asin(Math.sin(this.fi0) / this.alfa); |
|
this.g = Math.pow((1 + this.e * Math.sin(this.fi0)) / (1 - this.e * Math.sin(this.fi0)), this.alfa * this.e / 2); |
|
this.k = Math.tan(this.u0 / 2 + this.s45) / Math.pow(Math.tan(this.fi0 / 2 + this.s45), this.alfa) * this.g; |
|
this.k1 = this.k0; |
|
this.n0 = this.a * Math.sqrt(1 - this.e2) / (1 - this.e2 * Math.pow(Math.sin(this.fi0), 2)); |
|
this.s0 = 1.37008346281555; |
|
this.n = Math.sin(this.s0); |
|
this.ro0 = this.k1 * this.n0 / Math.tan(this.s0); |
|
this.ad = this.s90 - this.uq; |
|
} |
|
|
|
/* ellipsoid */ |
|
/* calculate xy from lat/lon */ |
|
/* Constants, identical to inverse transform function */ |
|
function forward$10(p) { |
|
var gfi, u, deltav, s, d, eps, ro; |
|
var lon = p.x; |
|
var lat = p.y; |
|
var delta_lon = adjust_lon(lon - this.long0); |
|
/* Transformation */ |
|
gfi = Math.pow(((1 + this.e * Math.sin(lat)) / (1 - this.e * Math.sin(lat))), (this.alfa * this.e / 2)); |
|
u = 2 * (Math.atan(this.k * Math.pow(Math.tan(lat / 2 + this.s45), this.alfa) / gfi) - this.s45); |
|
deltav = -delta_lon * this.alfa; |
|
s = Math.asin(Math.cos(this.ad) * Math.sin(u) + Math.sin(this.ad) * Math.cos(u) * Math.cos(deltav)); |
|
d = Math.asin(Math.cos(u) * Math.sin(deltav) / Math.cos(s)); |
|
eps = this.n * d; |
|
ro = this.ro0 * Math.pow(Math.tan(this.s0 / 2 + this.s45), this.n) / Math.pow(Math.tan(s / 2 + this.s45), this.n); |
|
p.y = ro * Math.cos(eps) / 1; |
|
p.x = ro * Math.sin(eps) / 1; |
|
|
|
if (!this.czech) { |
|
p.y *= -1; |
|
p.x *= -1; |
|
} |
|
return (p); |
|
} |
|
|
|
/* calculate lat/lon from xy */ |
|
function inverse$10(p) { |
|
var u, deltav, s, d, eps, ro, fi1; |
|
var ok; |
|
|
|
/* Transformation */ |
|
/* revert y, x*/ |
|
var tmp = p.x; |
|
p.x = p.y; |
|
p.y = tmp; |
|
if (!this.czech) { |
|
p.y *= -1; |
|
p.x *= -1; |
|
} |
|
ro = Math.sqrt(p.x * p.x + p.y * p.y); |
|
eps = Math.atan2(p.y, p.x); |
|
d = eps / Math.sin(this.s0); |
|
s = 2 * (Math.atan(Math.pow(this.ro0 / ro, 1 / this.n) * Math.tan(this.s0 / 2 + this.s45)) - this.s45); |
|
u = Math.asin(Math.cos(this.ad) * Math.sin(s) - Math.sin(this.ad) * Math.cos(s) * Math.cos(d)); |
|
deltav = Math.asin(Math.cos(s) * Math.sin(d) / Math.cos(u)); |
|
p.x = this.long0 - deltav / this.alfa; |
|
fi1 = u; |
|
ok = 0; |
|
var iter = 0; |
|
do { |
|
p.y = 2 * (Math.atan(Math.pow(this.k, - 1 / this.alfa) * Math.pow(Math.tan(u / 2 + this.s45), 1 / this.alfa) * Math.pow((1 + this.e * Math.sin(fi1)) / (1 - this.e * Math.sin(fi1)), this.e / 2)) - this.s45); |
|
if (Math.abs(fi1 - p.y) < 0.0000000001) { |
|
ok = 1; |
|
} |
|
fi1 = p.y; |
|
iter += 1; |
|
} while (ok === 0 && iter < 15); |
|
if (iter >= 15) { |
|
return null; |
|
} |
|
|
|
return (p); |
|
} |
|
|
|
var names$12 = ["Krovak", "krovak"]; |
|
var krovak = { |
|
init: init$11, |
|
forward: forward$10, |
|
inverse: inverse$10, |
|
names: names$12 |
|
}; |
|
|
|
var mlfn = function(e0, e1, e2, e3, phi) { |
|
return (e0 * phi - e1 * Math.sin(2 * phi) + e2 * Math.sin(4 * phi) - e3 * Math.sin(6 * phi)); |
|
}; |
|
|
|
var e0fn = function(x) { |
|
return (1 - 0.25 * x * (1 + x / 16 * (3 + 1.25 * x))); |
|
}; |
|
|
|
var e1fn = function(x) { |
|
return (0.375 * x * (1 + 0.25 * x * (1 + 0.46875 * x))); |
|
}; |
|
|
|
var e2fn = function(x) { |
|
return (0.05859375 * x * x * (1 + 0.75 * x)); |
|
}; |
|
|
|
var e3fn = function(x) { |
|
return (x * x * x * (35 / 3072)); |
|
}; |
|
|
|
var gN = function(a, e, sinphi) { |
|
var temp = e * sinphi; |
|
return a / Math.sqrt(1 - temp * temp); |
|
}; |
|
|
|
var adjust_lat = function(x) { |
|
return (Math.abs(x) < HALF_PI) ? x : (x - (sign(x) * Math.PI)); |
|
}; |
|
|
|
var imlfn = function(ml, e0, e1, e2, e3) { |
|
var phi; |
|
var dphi; |
|
|
|
phi = ml / e0; |
|
for (var i = 0; i < 15; i++) { |
|
dphi = (ml - (e0 * phi - e1 * Math.sin(2 * phi) + e2 * Math.sin(4 * phi) - e3 * Math.sin(6 * phi))) / (e0 - 2 * e1 * Math.cos(2 * phi) + 4 * e2 * Math.cos(4 * phi) - 6 * e3 * Math.cos(6 * phi)); |
|
phi += dphi; |
|
if (Math.abs(dphi) <= 0.0000000001) { |
|
return phi; |
|
} |
|
} |
|
|
|
//..reportError("IMLFN-CONV:Latitude failed to converge after 15 iterations"); |
|
return NaN; |
|
}; |
|
|
|
function init$12() { |
|
if (!this.sphere) { |
|
this.e0 = e0fn(this.es); |
|
this.e1 = e1fn(this.es); |
|
this.e2 = e2fn(this.es); |
|
this.e3 = e3fn(this.es); |
|
this.ml0 = this.a * mlfn(this.e0, this.e1, this.e2, this.e3, this.lat0); |
|
} |
|
} |
|
|
|
/* Cassini forward equations--mapping lat,long to x,y |
|
-----------------------------------------------------------------------*/ |
|
function forward$11(p) { |
|
|
|
/* Forward equations |
|
-----------------*/ |
|
var x, y; |
|
var lam = p.x; |
|
var phi = p.y; |
|
lam = adjust_lon(lam - this.long0); |
|
|
|
if (this.sphere) { |
|
x = this.a * Math.asin(Math.cos(phi) * Math.sin(lam)); |
|
y = this.a * (Math.atan2(Math.tan(phi), Math.cos(lam)) - this.lat0); |
|
} |
|
else { |
|
//ellipsoid |
|
var sinphi = Math.sin(phi); |
|
var cosphi = Math.cos(phi); |
|
var nl = gN(this.a, this.e, sinphi); |
|
var tl = Math.tan(phi) * Math.tan(phi); |
|
var al = lam * Math.cos(phi); |
|
var asq = al * al; |
|
var cl = this.es * cosphi * cosphi / (1 - this.es); |
|
var ml = this.a * mlfn(this.e0, this.e1, this.e2, this.e3, phi); |
|
|
|
x = nl * al * (1 - asq * tl * (1 / 6 - (8 - tl + 8 * cl) * asq / 120)); |
|
y = ml - this.ml0 + nl * sinphi / cosphi * asq * (0.5 + (5 - tl + 6 * cl) * asq / 24); |
|
|
|
|
|
} |
|
|
|
p.x = x + this.x0; |
|
p.y = y + this.y0; |
|
return p; |
|
} |
|
|
|
/* Inverse equations |
|
-----------------*/ |
|
function inverse$11(p) { |
|
p.x -= this.x0; |
|
p.y -= this.y0; |
|
var x = p.x / this.a; |
|
var y = p.y / this.a; |
|
var phi, lam; |
|
|
|
if (this.sphere) { |
|
var dd = y + this.lat0; |
|
phi = Math.asin(Math.sin(dd) * Math.cos(x)); |
|
lam = Math.atan2(Math.tan(x), Math.cos(dd)); |
|
} |
|
else { |
|
/* ellipsoid */ |
|
var ml1 = this.ml0 / this.a + y; |
|
var phi1 = imlfn(ml1, this.e0, this.e1, this.e2, this.e3); |
|
if (Math.abs(Math.abs(phi1) - HALF_PI) <= EPSLN) { |
|
p.x = this.long0; |
|
p.y = HALF_PI; |
|
if (y < 0) { |
|
p.y *= -1; |
|
} |
|
return p; |
|
} |
|
var nl1 = gN(this.a, this.e, Math.sin(phi1)); |
|
|
|
var rl1 = nl1 * nl1 * nl1 / this.a / this.a * (1 - this.es); |
|
var tl1 = Math.pow(Math.tan(phi1), 2); |
|
var dl = x * this.a / nl1; |
|
var dsq = dl * dl; |
|
phi = phi1 - nl1 * Math.tan(phi1) / rl1 * dl * dl * (0.5 - (1 + 3 * tl1) * dl * dl / 24); |
|
lam = dl * (1 - dsq * (tl1 / 3 + (1 + 3 * tl1) * tl1 * dsq / 15)) / Math.cos(phi1); |
|
|
|
} |
|
|
|
p.x = adjust_lon(lam + this.long0); |
|
p.y = adjust_lat(phi); |
|
return p; |
|
|
|
} |
|
|
|
var names$13 = ["Cassini", "Cassini_Soldner", "cass"]; |
|
var cass = { |
|
init: init$12, |
|
forward: forward$11, |
|
inverse: inverse$11, |
|
names: names$13 |
|
}; |
|
|
|
var qsfnz = function(eccent, sinphi) { |
|
var con; |
|
if (eccent > 1.0e-7) { |
|
con = eccent * sinphi; |
|
return ((1 - eccent * eccent) * (sinphi / (1 - con * con) - (0.5 / eccent) * Math.log((1 - con) / (1 + con)))); |
|
} |
|
else { |
|
return (2 * sinphi); |
|
} |
|
}; |
|
|
|
/* |
|
reference |
|
"New Equal-Area Map Projections for Noncircular Regions", John P. Snyder, |
|
The American Cartographer, Vol 15, No. 4, October 1988, pp. 341-355. |
|
*/ |
|
|
|
var S_POLE = 1; |
|
|
|
var N_POLE = 2; |
|
var EQUIT = 3; |
|
var OBLIQ = 4; |
|
|
|
/* Initialize the Lambert Azimuthal Equal Area projection |
|
------------------------------------------------------*/ |
|
function init$13() { |
|
var t = Math.abs(this.lat0); |
|
if (Math.abs(t - HALF_PI) < EPSLN) { |
|
this.mode = this.lat0 < 0 ? this.S_POLE : this.N_POLE; |
|
} |
|
else if (Math.abs(t) < EPSLN) { |
|
this.mode = this.EQUIT; |
|
} |
|
else { |
|
this.mode = this.OBLIQ; |
|
} |
|
if (this.es > 0) { |
|
var sinphi; |
|
|
|
this.qp = qsfnz(this.e, 1); |
|
this.mmf = 0.5 / (1 - this.es); |
|
this.apa = authset(this.es); |
|
switch (this.mode) { |
|
case this.N_POLE: |
|
this.dd = 1; |
|
break; |
|
case this.S_POLE: |
|
this.dd = 1; |
|
break; |
|
case this.EQUIT: |
|
this.rq = Math.sqrt(0.5 * this.qp); |
|
this.dd = 1 / this.rq; |
|
this.xmf = 1; |
|
this.ymf = 0.5 * this.qp; |
|
break; |
|
case this.OBLIQ: |
|
this.rq = Math.sqrt(0.5 * this.qp); |
|
sinphi = Math.sin(this.lat0); |
|
this.sinb1 = qsfnz(this.e, sinphi) / this.qp; |
|
this.cosb1 = Math.sqrt(1 - this.sinb1 * this.sinb1); |
|
this.dd = Math.cos(this.lat0) / (Math.sqrt(1 - this.es * sinphi * sinphi) * this.rq * this.cosb1); |
|
this.ymf = (this.xmf = this.rq) / this.dd; |
|
this.xmf *= this.dd; |
|
break; |
|
} |
|
} |
|
else { |
|
if (this.mode === this.OBLIQ) { |
|
this.sinph0 = Math.sin(this.lat0); |
|
this.cosph0 = Math.cos(this.lat0); |
|
} |
|
} |
|
} |
|
|
|
/* Lambert Azimuthal Equal Area forward equations--mapping lat,long to x,y |
|
-----------------------------------------------------------------------*/ |
|
function forward$12(p) { |
|
|
|
/* Forward equations |
|
-----------------*/ |
|
var x, y, coslam, sinlam, sinphi, q, sinb, cosb, b, cosphi; |
|
var lam = p.x; |
|
var phi = p.y; |
|
|
|
lam = adjust_lon(lam - this.long0); |
|
if (this.sphere) { |
|
sinphi = Math.sin(phi); |
|
cosphi = Math.cos(phi); |
|
coslam = Math.cos(lam); |
|
if (this.mode === this.OBLIQ || this.mode === this.EQUIT) { |
|
y = (this.mode === this.EQUIT) ? 1 + cosphi * coslam : 1 + this.sinph0 * sinphi + this.cosph0 * cosphi * coslam; |
|
if (y <= EPSLN) { |
|
return null; |
|
} |
|
y = Math.sqrt(2 / y); |
|
x = y * cosphi * Math.sin(lam); |
|
y *= (this.mode === this.EQUIT) ? sinphi : this.cosph0 * sinphi - this.sinph0 * cosphi * coslam; |
|
} |
|
else if (this.mode === this.N_POLE || this.mode === this.S_POLE) { |
|
if (this.mode === this.N_POLE) { |
|
coslam = -coslam; |
|
} |
|
if (Math.abs(phi + this.phi0) < EPSLN) { |
|
return null; |
|
} |
|
y = FORTPI - phi * 0.5; |
|
y = 2 * ((this.mode === this.S_POLE) ? Math.cos(y) : Math.sin(y)); |
|
x = y * Math.sin(lam); |
|
y *= coslam; |
|
} |
|
} |
|
else { |
|
sinb = 0; |
|
cosb = 0; |
|
b = 0; |
|
coslam = Math.cos(lam); |
|
sinlam = Math.sin(lam); |
|
sinphi = Math.sin(phi); |
|
q = qsfnz(this.e, sinphi); |
|
if (this.mode === this.OBLIQ || this.mode === this.EQUIT) { |
|
sinb = q / this.qp; |
|
cosb = Math.sqrt(1 - sinb * sinb); |
|
} |
|
switch (this.mode) { |
|
case this.OBLIQ: |
|
b = 1 + this.sinb1 * sinb + this.cosb1 * cosb * coslam; |
|
break; |
|
case this.EQUIT: |
|
b = 1 + cosb * coslam; |
|
break; |
|
case this.N_POLE: |
|
b = HALF_PI + phi; |
|
q = this.qp - q; |
|
break; |
|
case this.S_POLE: |
|
b = phi - HALF_PI; |
|
q = this.qp + q; |
|
break; |
|
} |
|
if (Math.abs(b) < EPSLN) { |
|
return null; |
|
} |
|
switch (this.mode) { |
|
case this.OBLIQ: |
|
case this.EQUIT: |
|
b = Math.sqrt(2 / b); |
|
if (this.mode === this.OBLIQ) { |
|
y = this.ymf * b * (this.cosb1 * sinb - this.sinb1 * cosb * coslam); |
|
} |
|
else { |
|
y = (b = Math.sqrt(2 / (1 + cosb * coslam))) * sinb * this.ymf; |
|
} |
|
x = this.xmf * b * cosb * sinlam; |
|
break; |
|
case this.N_POLE: |
|
case this.S_POLE: |
|
if (q >= 0) { |
|
x = (b = Math.sqrt(q)) * sinlam; |
|
y = coslam * ((this.mode === this.S_POLE) ? b : -b); |
|
} |
|
else { |
|
x = y = 0; |
|
} |
|
break; |
|
} |
|
} |
|
|
|
p.x = this.a * x + this.x0; |
|
p.y = this.a * y + this.y0; |
|
return p; |
|
} |
|
|
|
/* Inverse equations |
|
-----------------*/ |
|
function inverse$12(p) { |
|
p.x -= this.x0; |
|
p.y -= this.y0; |
|
var x = p.x / this.a; |
|
var y = p.y / this.a; |
|
var lam, phi, cCe, sCe, q, rho, ab; |
|
if (this.sphere) { |
|
var cosz = 0, |
|
rh, sinz = 0; |
|
|
|
rh = Math.sqrt(x * x + y * y); |
|
phi = rh * 0.5; |
|
if (phi > 1) { |
|
return null; |
|
} |
|
phi = 2 * Math.asin(phi); |
|
if (this.mode === this.OBLIQ || this.mode === this.EQUIT) { |
|
sinz = Math.sin(phi); |
|
cosz = Math.cos(phi); |
|
} |
|
switch (this.mode) { |
|
case this.EQUIT: |
|
phi = (Math.abs(rh) <= EPSLN) ? 0 : Math.asin(y * sinz / rh); |
|
x *= sinz; |
|
y = cosz * rh; |
|
break; |
|
case this.OBLIQ: |
|
phi = (Math.abs(rh) <= EPSLN) ? this.phi0 : Math.asin(cosz * this.sinph0 + y * sinz * this.cosph0 / rh); |
|
x *= sinz * this.cosph0; |
|
y = (cosz - Math.sin(phi) * this.sinph0) * rh; |
|
break; |
|
case this.N_POLE: |
|
y = -y; |
|
phi = HALF_PI - phi; |
|
break; |
|
case this.S_POLE: |
|
phi -= HALF_PI; |
|
break; |
|
} |
|
lam = (y === 0 && (this.mode === this.EQUIT || this.mode === this.OBLIQ)) ? 0 : Math.atan2(x, y); |
|
} |
|
else { |
|
ab = 0; |
|
if (this.mode === this.OBLIQ || this.mode === this.EQUIT) { |
|
x /= this.dd; |
|
y *= this.dd; |
|
rho = Math.sqrt(x * x + y * y); |
|
if (rho < EPSLN) { |
|
p.x = 0; |
|
p.y = this.phi0; |
|
return p; |
|
} |
|
sCe = 2 * Math.asin(0.5 * rho / this.rq); |
|
cCe = Math.cos(sCe); |
|
x *= (sCe = Math.sin(sCe)); |
|
if (this.mode === this.OBLIQ) { |
|
ab = cCe * this.sinb1 + y * sCe * this.cosb1 / rho; |
|
q = this.qp * ab; |
|
y = rho * this.cosb1 * cCe - y * this.sinb1 * sCe; |
|
} |
|
else { |
|
ab = y * sCe / rho; |
|
q = this.qp * ab; |
|
y = rho * cCe; |
|
} |
|
} |
|
else if (this.mode === this.N_POLE || this.mode === this.S_POLE) { |
|
if (this.mode === this.N_POLE) { |
|
y = -y; |
|
} |
|
q = (x * x + y * y); |
|
if (!q) { |
|
p.x = 0; |
|
p.y = this.phi0; |
|
return p; |
|
} |
|
ab = 1 - q / this.qp; |
|
if (this.mode === this.S_POLE) { |
|
ab = -ab; |
|
} |
|
} |
|
lam = Math.atan2(x, y); |
|
phi = authlat(Math.asin(ab), this.apa); |
|
} |
|
|
|
p.x = adjust_lon(this.long0 + lam); |
|
p.y = phi; |
|
return p; |
|
} |
|
|
|
/* determine latitude from authalic latitude */ |
|
var P00 = 0.33333333333333333333; |
|
|
|
var P01 = 0.17222222222222222222; |
|
var P02 = 0.10257936507936507936; |
|
var P10 = 0.06388888888888888888; |
|
var P11 = 0.06640211640211640211; |
|
var P20 = 0.01641501294219154443; |
|
|
|
function authset(es) { |
|
var t; |
|
var APA = []; |
|
APA[0] = es * P00; |
|
t = es * es; |
|
APA[0] += t * P01; |
|
APA[1] = t * P10; |
|
t *= es; |
|
APA[0] += t * P02; |
|
APA[1] += t * P11; |
|
APA[2] = t * P20; |
|
return APA; |
|
} |
|
|
|
function authlat(beta, APA) { |
|
var t = beta + beta; |
|
return (beta + APA[0] * Math.sin(t) + APA[1] * Math.sin(t + t) + APA[2] * Math.sin(t + t + t)); |
|
} |
|
|
|
var names$14 = ["Lambert Azimuthal Equal Area", "Lambert_Azimuthal_Equal_Area", "laea"]; |
|
var laea = { |
|
init: init$13, |
|
forward: forward$12, |
|
inverse: inverse$12, |
|
names: names$14, |
|
S_POLE: S_POLE, |
|
N_POLE: N_POLE, |
|
EQUIT: EQUIT, |
|
OBLIQ: OBLIQ |
|
}; |
|
|
|
var asinz = function(x) { |
|
if (Math.abs(x) > 1) { |
|
x = (x > 1) ? 1 : -1; |
|
} |
|
return Math.asin(x); |
|
}; |
|
|
|
function init$14() { |
|
|
|
if (Math.abs(this.lat1 + this.lat2) < EPSLN) { |
|
return; |
|
} |
|
this.temp = this.b / this.a; |
|
this.es = 1 - Math.pow(this.temp, 2); |
|
this.e3 = Math.sqrt(this.es); |
|
|
|
this.sin_po = Math.sin(this.lat1); |
|
this.cos_po = Math.cos(this.lat1); |
|
this.t1 = this.sin_po; |
|
this.con = this.sin_po; |
|
this.ms1 = msfnz(this.e3, this.sin_po, this.cos_po); |
|
this.qs1 = qsfnz(this.e3, this.sin_po, this.cos_po); |
|
|
|
this.sin_po = Math.sin(this.lat2); |
|
this.cos_po = Math.cos(this.lat2); |
|
this.t2 = this.sin_po; |
|
this.ms2 = msfnz(this.e3, this.sin_po, this.cos_po); |
|
this.qs2 = qsfnz(this.e3, this.sin_po, this.cos_po); |
|
|
|
this.sin_po = Math.sin(this.lat0); |
|
this.cos_po = Math.cos(this.lat0); |
|
this.t3 = this.sin_po; |
|
this.qs0 = qsfnz(this.e3, this.sin_po, this.cos_po); |
|
|
|
if (Math.abs(this.lat1 - this.lat2) > EPSLN) { |
|
this.ns0 = (this.ms1 * this.ms1 - this.ms2 * this.ms2) / (this.qs2 - this.qs1); |
|
} |
|
else { |
|
this.ns0 = this.con; |
|
} |
|
this.c = this.ms1 * this.ms1 + this.ns0 * this.qs1; |
|
this.rh = this.a * Math.sqrt(this.c - this.ns0 * this.qs0) / this.ns0; |
|
} |
|
|
|
/* Albers Conical Equal Area forward equations--mapping lat,long to x,y |
|
-------------------------------------------------------------------*/ |
|
function forward$13(p) { |
|
|
|
var lon = p.x; |
|
var lat = p.y; |
|
|
|
this.sin_phi = Math.sin(lat); |
|
this.cos_phi = Math.cos(lat); |
|
|
|
var qs = qsfnz(this.e3, this.sin_phi, this.cos_phi); |
|
var rh1 = this.a * Math.sqrt(this.c - this.ns0 * qs) / this.ns0; |
|
var theta = this.ns0 * adjust_lon(lon - this.long0); |
|
var x = rh1 * Math.sin(theta) + this.x0; |
|
var y = this.rh - rh1 * Math.cos(theta) + this.y0; |
|
|
|
p.x = x; |
|
p.y = y; |
|
return p; |
|
} |
|
|
|
function inverse$13(p) { |
|
var rh1, qs, con, theta, lon, lat; |
|
|
|
p.x -= this.x0; |
|
p.y = this.rh - p.y + this.y0; |
|
if (this.ns0 >= 0) { |
|
rh1 = Math.sqrt(p.x * p.x + p.y * p.y); |
|
con = 1; |
|
} |
|
else { |
|
rh1 = -Math.sqrt(p.x * p.x + p.y * p.y); |
|
con = -1; |
|
} |
|
theta = 0; |
|
if (rh1 !== 0) { |
|
theta = Math.atan2(con * p.x, con * p.y); |
|
} |
|
con = rh1 * this.ns0 / this.a; |
|
if (this.sphere) { |
|
lat = Math.asin((this.c - con * con) / (2 * this.ns0)); |
|
} |
|
else { |
|
qs = (this.c - con * con) / this.ns0; |
|
lat = this.phi1z(this.e3, qs); |
|
} |
|
|
|
lon = adjust_lon(theta / this.ns0 + this.long0); |
|
p.x = lon; |
|
p.y = lat; |
|
return p; |
|
} |
|
|
|
/* Function to compute phi1, the latitude for the inverse of the |
|
Albers Conical Equal-Area projection. |
|
-------------------------------------------*/ |
|
function phi1z(eccent, qs) { |
|
var sinphi, cosphi, con, com, dphi; |
|
var phi = asinz(0.5 * qs); |
|
if (eccent < EPSLN) { |
|
return phi; |
|
} |
|
|
|
var eccnts = eccent * eccent; |
|
for (var i = 1; i <= 25; i++) { |
|
sinphi = Math.sin(phi); |
|
cosphi = Math.cos(phi); |
|
con = eccent * sinphi; |
|
com = 1 - con * con; |
|
dphi = 0.5 * com * com / cosphi * (qs / (1 - eccnts) - sinphi / com + 0.5 / eccent * Math.log((1 - con) / (1 + con))); |
|
phi = phi + dphi; |
|
if (Math.abs(dphi) <= 1e-7) { |
|
return phi; |
|
} |
|
} |
|
return null; |
|
} |
|
|
|
var names$15 = ["Albers_Conic_Equal_Area", "Albers", "aea"]; |
|
var aea = { |
|
init: init$14, |
|
forward: forward$13, |
|
inverse: inverse$13, |
|
names: names$15, |
|
phi1z: phi1z |
|
}; |
|
|
|
/* |
|
reference: |
|
Wolfram Mathworld "Gnomonic Projection" |
|
http://mathworld.wolfram.com/GnomonicProjection.html |
|
Accessed: 12th November 2009 |
|
*/ |
|
function init$15() { |
|
|
|
/* Place parameters in static storage for common use |
|
-------------------------------------------------*/ |
|
this.sin_p14 = Math.sin(this.lat0); |
|
this.cos_p14 = Math.cos(this.lat0); |
|
// Approximation for projecting points to the horizon (infinity) |
|
this.infinity_dist = 1000 * this.a; |
|
this.rc = 1; |
|
} |
|
|
|
/* Gnomonic forward equations--mapping lat,long to x,y |
|
---------------------------------------------------*/ |
|
function forward$14(p) { |
|
var sinphi, cosphi; /* sin and cos value */ |
|
var dlon; /* delta longitude value */ |
|
var coslon; /* cos of longitude */ |
|
var ksp; /* scale factor */ |
|
var g; |
|
var x, y; |
|
var lon = p.x; |
|
var lat = p.y; |
|
/* Forward equations |
|
-----------------*/ |
|
dlon = adjust_lon(lon - this.long0); |
|
|
|
sinphi = Math.sin(lat); |
|
cosphi = Math.cos(lat); |
|
|
|
coslon = Math.cos(dlon); |
|
g = this.sin_p14 * sinphi + this.cos_p14 * cosphi * coslon; |
|
ksp = 1; |
|
if ((g > 0) || (Math.abs(g) <= EPSLN)) { |
|
x = this.x0 + this.a * ksp * cosphi * Math.sin(dlon) / g; |
|
y = this.y0 + this.a * ksp * (this.cos_p14 * sinphi - this.sin_p14 * cosphi * coslon) / g; |
|
} |
|
else { |
|
|
|
// Point is in the opposing hemisphere and is unprojectable |
|
// We still need to return a reasonable point, so we project |
|
// to infinity, on a bearing |
|
// equivalent to the northern hemisphere equivalent |
|
// This is a reasonable approximation for short shapes and lines that |
|
// straddle the horizon. |
|
|
|
x = this.x0 + this.infinity_dist * cosphi * Math.sin(dlon); |
|
y = this.y0 + this.infinity_dist * (this.cos_p14 * sinphi - this.sin_p14 * cosphi * coslon); |
|
|
|
} |
|
p.x = x; |
|
p.y = y; |
|
return p; |
|
} |
|
|
|
function inverse$14(p) { |
|
var rh; /* Rho */ |
|
var sinc, cosc; |
|
var c; |
|
var lon, lat; |
|
|
|
/* Inverse equations |
|
-----------------*/ |
|
p.x = (p.x - this.x0) / this.a; |
|
p.y = (p.y - this.y0) / this.a; |
|
|
|
p.x /= this.k0; |
|
p.y /= this.k0; |
|
|
|
if ((rh = Math.sqrt(p.x * p.x + p.y * p.y))) { |
|
c = Math.atan2(rh, this.rc); |
|
sinc = Math.sin(c); |
|
cosc = Math.cos(c); |
|
|
|
lat = asinz(cosc * this.sin_p14 + (p.y * sinc * this.cos_p14) / rh); |
|
lon = Math.atan2(p.x * sinc, rh * this.cos_p14 * cosc - p.y * this.sin_p14 * sinc); |
|
lon = adjust_lon(this.long0 + lon); |
|
} |
|
else { |
|
lat = this.phic0; |
|
lon = 0; |
|
} |
|
|
|
p.x = lon; |
|
p.y = lat; |
|
return p; |
|
} |
|
|
|
var names$16 = ["gnom"]; |
|
var gnom = { |
|
init: init$15, |
|
forward: forward$14, |
|
inverse: inverse$14, |
|
names: names$16 |
|
}; |
|
|
|
var iqsfnz = function(eccent, q) { |
|
var temp = 1 - (1 - eccent * eccent) / (2 * eccent) * Math.log((1 - eccent) / (1 + eccent)); |
|
if (Math.abs(Math.abs(q) - temp) < 1.0E-6) { |
|
if (q < 0) { |
|
return (-1 * HALF_PI); |
|
} |
|
else { |
|
return HALF_PI; |
|
} |
|
} |
|
//var phi = 0.5* q/(1-eccent*eccent); |
|
var phi = Math.asin(0.5 * q); |
|
var dphi; |
|
var sin_phi; |
|
var cos_phi; |
|
var con; |
|
for (var i = 0; i < 30; i++) { |
|
sin_phi = Math.sin(phi); |
|
cos_phi = Math.cos(phi); |
|
con = eccent * sin_phi; |
|
dphi = Math.pow(1 - con * con, 2) / (2 * cos_phi) * (q / (1 - eccent * eccent) - sin_phi / (1 - con * con) + 0.5 / eccent * Math.log((1 - con) / (1 + con))); |
|
phi += dphi; |
|
if (Math.abs(dphi) <= 0.0000000001) { |
|
return phi; |
|
} |
|
} |
|
|
|
//console.log("IQSFN-CONV:Latitude failed to converge after 30 iterations"); |
|
return NaN; |
|
}; |
|
|
|
/* |
|
reference: |
|
"Cartographic Projection Procedures for the UNIX Environment- |
|
A User's Manual" by Gerald I. Evenden, |
|
USGS Open File Report 90-284and Release 4 Interim Reports (2003) |
|
*/ |
|
function init$16() { |
|
//no-op |
|
if (!this.sphere) { |
|
this.k0 = msfnz(this.e, Math.sin(this.lat_ts), Math.cos(this.lat_ts)); |
|
} |
|
} |
|
|
|
/* Cylindrical Equal Area forward equations--mapping lat,long to x,y |
|
------------------------------------------------------------*/ |
|
function forward$15(p) { |
|
var lon = p.x; |
|
var lat = p.y; |
|
var x, y; |
|
/* Forward equations |
|
-----------------*/ |
|
var dlon = adjust_lon(lon - this.long0); |
|
if (this.sphere) { |
|
x = this.x0 + this.a * dlon * Math.cos(this.lat_ts); |
|
y = this.y0 + this.a * Math.sin(lat) / Math.cos(this.lat_ts); |
|
} |
|
else { |
|
var qs = qsfnz(this.e, Math.sin(lat)); |
|
x = this.x0 + this.a * this.k0 * dlon; |
|
y = this.y0 + this.a * qs * 0.5 / this.k0; |
|
} |
|
|
|
p.x = x; |
|
p.y = y; |
|
return p; |
|
} |
|
|
|
/* Cylindrical Equal Area inverse equations--mapping x,y to lat/long |
|
------------------------------------------------------------*/ |
|
function inverse$15(p) { |
|
p.x -= this.x0; |
|
p.y -= this.y0; |
|
var lon, lat; |
|
|
|
if (this.sphere) { |
|
lon = adjust_lon(this.long0 + (p.x / this.a) / Math.cos(this.lat_ts)); |
|
lat = Math.asin((p.y / this.a) * Math.cos(this.lat_ts)); |
|
} |
|
else { |
|
lat = iqsfnz(this.e, 2 * p.y * this.k0 / this.a); |
|
lon = adjust_lon(this.long0 + p.x / (this.a * this.k0)); |
|
} |
|
|
|
p.x = lon; |
|
p.y = lat; |
|
return p; |
|
} |
|
|
|
var names$17 = ["cea"]; |
|
var cea = { |
|
init: init$16, |
|
forward: forward$15, |
|
inverse: inverse$15, |
|
names: names$17 |
|
}; |
|
|
|
function init$17() { |
|
|
|
this.x0 = this.x0 || 0; |
|
this.y0 = this.y0 || 0; |
|
this.lat0 = this.lat0 || 0; |
|
this.long0 = this.long0 || 0; |
|
this.lat_ts = this.lat_ts || 0; |
|
this.title = this.title || "Equidistant Cylindrical (Plate Carre)"; |
|
|
|
this.rc = Math.cos(this.lat_ts); |
|
} |
|
|
|
// forward equations--mapping lat,long to x,y |
|
// ----------------------------------------------------------------- |
|
function forward$16(p) { |
|
|
|
var lon = p.x; |
|
var lat = p.y; |
|
|
|
var dlon = adjust_lon(lon - this.long0); |
|
var dlat = adjust_lat(lat - this.lat0); |
|
p.x = this.x0 + (this.a * dlon * this.rc); |
|
p.y = this.y0 + (this.a * dlat); |
|
return p; |
|
} |
|
|
|
// inverse equations--mapping x,y to lat/long |
|
// ----------------------------------------------------------------- |
|
function inverse$16(p) { |
|
|
|
var x = p.x; |
|
var y = p.y; |
|
|
|
p.x = adjust_lon(this.long0 + ((x - this.x0) / (this.a * this.rc))); |
|
p.y = adjust_lat(this.lat0 + ((y - this.y0) / (this.a))); |
|
return p; |
|
} |
|
|
|
var names$18 = ["Equirectangular", "Equidistant_Cylindrical", "eqc"]; |
|
var eqc = { |
|
init: init$17, |
|
forward: forward$16, |
|
inverse: inverse$16, |
|
names: names$18 |
|
}; |
|
|
|
var MAX_ITER$2 = 20; |
|
|
|
function init$18() { |
|
/* Place parameters in static storage for common use |
|
-------------------------------------------------*/ |
|
this.temp = this.b / this.a; |
|
this.es = 1 - Math.pow(this.temp, 2); // devait etre dans tmerc.js mais n y est pas donc je commente sinon retour de valeurs nulles |
|
this.e = Math.sqrt(this.es); |
|
this.e0 = e0fn(this.es); |
|
this.e1 = e1fn(this.es); |
|
this.e2 = e2fn(this.es); |
|
this.e3 = e3fn(this.es); |
|
this.ml0 = this.a * mlfn(this.e0, this.e1, this.e2, this.e3, this.lat0); //si que des zeros le calcul ne se fait pas |
|
} |
|
|
|
/* Polyconic forward equations--mapping lat,long to x,y |
|
---------------------------------------------------*/ |
|
function forward$17(p) { |
|
var lon = p.x; |
|
var lat = p.y; |
|
var x, y, el; |
|
var dlon = adjust_lon(lon - this.long0); |
|
el = dlon * Math.sin(lat); |
|
if (this.sphere) { |
|
if (Math.abs(lat) <= EPSLN) { |
|
x = this.a * dlon; |
|
y = -1 * this.a * this.lat0; |
|
} |
|
else { |
|
x = this.a * Math.sin(el) / Math.tan(lat); |
|
y = this.a * (adjust_lat(lat - this.lat0) + (1 - Math.cos(el)) / Math.tan(lat)); |
|
} |
|
} |
|
else { |
|
if (Math.abs(lat) <= EPSLN) { |
|
x = this.a * dlon; |
|
y = -1 * this.ml0; |
|
} |
|
else { |
|
var nl = gN(this.a, this.e, Math.sin(lat)) / Math.tan(lat); |
|
x = nl * Math.sin(el); |
|
y = this.a * mlfn(this.e0, this.e1, this.e2, this.e3, lat) - this.ml0 + nl * (1 - Math.cos(el)); |
|
} |
|
|
|
} |
|
p.x = x + this.x0; |
|
p.y = y + this.y0; |
|
return p; |
|
} |
|
|
|
/* Inverse equations |
|
-----------------*/ |
|
function inverse$17(p) { |
|
var lon, lat, x, y, i; |
|
var al, bl; |
|
var phi, dphi; |
|
x = p.x - this.x0; |
|
y = p.y - this.y0; |
|
|
|
if (this.sphere) { |
|
if (Math.abs(y + this.a * this.lat0) <= EPSLN) { |
|
lon = adjust_lon(x / this.a + this.long0); |
|
lat = 0; |
|
} |
|
else { |
|
al = this.lat0 + y / this.a; |
|
bl = x * x / this.a / this.a + al * al; |
|
phi = al; |
|
var tanphi; |
|
for (i = MAX_ITER$2; i; --i) { |
|
tanphi = Math.tan(phi); |
|
dphi = -1 * (al * (phi * tanphi + 1) - phi - 0.5 * (phi * phi + bl) * tanphi) / ((phi - al) / tanphi - 1); |
|
phi += dphi; |
|
if (Math.abs(dphi) <= EPSLN) { |
|
lat = phi; |
|
break; |
|
} |
|
} |
|
lon = adjust_lon(this.long0 + (Math.asin(x * Math.tan(phi) / this.a)) / Math.sin(lat)); |
|
} |
|
} |
|
else { |
|
if (Math.abs(y + this.ml0) <= EPSLN) { |
|
lat = 0; |
|
lon = adjust_lon(this.long0 + x / this.a); |
|
} |
|
else { |
|
|
|
al = (this.ml0 + y) / this.a; |
|
bl = x * x / this.a / this.a + al * al; |
|
phi = al; |
|
var cl, mln, mlnp, ma; |
|
var con; |
|
for (i = MAX_ITER$2; i; --i) { |
|
con = this.e * Math.sin(phi); |
|
cl = Math.sqrt(1 - con * con) * Math.tan(phi); |
|
mln = this.a * mlfn(this.e0, this.e1, this.e2, this.e3, phi); |
|
mlnp = this.e0 - 2 * this.e1 * Math.cos(2 * phi) + 4 * this.e2 * Math.cos(4 * phi) - 6 * this.e3 * Math.cos(6 * phi); |
|
ma = mln / this.a; |
|
dphi = (al * (cl * ma + 1) - ma - 0.5 * cl * (ma * ma + bl)) / (this.es * Math.sin(2 * phi) * (ma * ma + bl - 2 * al * ma) / (4 * cl) + (al - ma) * (cl * mlnp - 2 / Math.sin(2 * phi)) - mlnp); |
|
phi -= dphi; |
|
if (Math.abs(dphi) <= EPSLN) { |
|
lat = phi; |
|
break; |
|
} |
|
} |
|
|
|
//lat=phi4z(this.e,this.e0,this.e1,this.e2,this.e3,al,bl,0,0); |
|
cl = Math.sqrt(1 - this.es * Math.pow(Math.sin(lat), 2)) * Math.tan(lat); |
|
lon = adjust_lon(this.long0 + Math.asin(x * cl / this.a) / Math.sin(lat)); |
|
} |
|
} |
|
|
|
p.x = lon; |
|
p.y = lat; |
|
return p; |
|
} |
|
|
|
var names$19 = ["Polyconic", "poly"]; |
|
var poly = { |
|
init: init$18, |
|
forward: forward$17, |
|
inverse: inverse$17, |
|
names: names$19 |
|
}; |
|
|
|
/* |
|
reference |
|
Department of Land and Survey Technical Circular 1973/32 |
|
http://www.linz.govt.nz/docs/miscellaneous/nz-map-definition.pdf |
|
OSG Technical Report 4.1 |
|
http://www.linz.govt.nz/docs/miscellaneous/nzmg.pdf |
|
*/ |
|
|
|
/** |
|
* iterations: Number of iterations to refine inverse transform. |
|
* 0 -> km accuracy |
|
* 1 -> m accuracy -- suitable for most mapping applications |
|
* 2 -> mm accuracy |
|
*/ |
|
|
|
|
|
function init$19() { |
|
this.A = []; |
|
this.A[1] = 0.6399175073; |
|
this.A[2] = -0.1358797613; |
|
this.A[3] = 0.063294409; |
|
this.A[4] = -0.02526853; |
|
this.A[5] = 0.0117879; |
|
this.A[6] = -0.0055161; |
|
this.A[7] = 0.0026906; |
|
this.A[8] = -0.001333; |
|
this.A[9] = 0.00067; |
|
this.A[10] = -0.00034; |
|
|
|
this.B_re = []; |
|
this.B_im = []; |
|
this.B_re[1] = 0.7557853228; |
|
this.B_im[1] = 0; |
|
this.B_re[2] = 0.249204646; |
|
this.B_im[2] = 0.003371507; |
|
this.B_re[3] = -0.001541739; |
|
this.B_im[3] = 0.041058560; |
|
this.B_re[4] = -0.10162907; |
|
this.B_im[4] = 0.01727609; |
|
this.B_re[5] = -0.26623489; |
|
this.B_im[5] = -0.36249218; |
|
this.B_re[6] = -0.6870983; |
|
this.B_im[6] = -1.1651967; |
|
|
|
this.C_re = []; |
|
this.C_im = []; |
|
this.C_re[1] = 1.3231270439; |
|
this.C_im[1] = 0; |
|
this.C_re[2] = -0.577245789; |
|
this.C_im[2] = -0.007809598; |
|
this.C_re[3] = 0.508307513; |
|
this.C_im[3] = -0.112208952; |
|
this.C_re[4] = -0.15094762; |
|
this.C_im[4] = 0.18200602; |
|
this.C_re[5] = 1.01418179; |
|
this.C_im[5] = 1.64497696; |
|
this.C_re[6] = 1.9660549; |
|
this.C_im[6] = 2.5127645; |
|
|
|
this.D = []; |
|
this.D[1] = 1.5627014243; |
|
this.D[2] = 0.5185406398; |
|
this.D[3] = -0.03333098; |
|
this.D[4] = -0.1052906; |
|
this.D[5] = -0.0368594; |
|
this.D[6] = 0.007317; |
|
this.D[7] = 0.01220; |
|
this.D[8] = 0.00394; |
|
this.D[9] = -0.0013; |
|
} |
|
|
|
/** |
|
New Zealand Map Grid Forward - long/lat to x/y |
|
long/lat in radians |
|
*/ |
|
function forward$18(p) { |
|
var n; |
|
var lon = p.x; |
|
var lat = p.y; |
|
|
|
var delta_lat = lat - this.lat0; |
|
var delta_lon = lon - this.long0; |
|
|
|
// 1. Calculate d_phi and d_psi ... // and d_lambda |
|
// For this algorithm, delta_latitude is in seconds of arc x 10-5, so we need to scale to those units. Longitude is radians. |
|
var d_phi = delta_lat / SEC_TO_RAD * 1E-5; |
|
var d_lambda = delta_lon; |
|
var d_phi_n = 1; // d_phi^0 |
|
|
|
var d_psi = 0; |
|
for (n = 1; n <= 10; n++) { |
|
d_phi_n = d_phi_n * d_phi; |
|
d_psi = d_psi + this.A[n] * d_phi_n; |
|
} |
|
|
|
// 2. Calculate theta |
|
var th_re = d_psi; |
|
var th_im = d_lambda; |
|
|
|
// 3. Calculate z |
|
var th_n_re = 1; |
|
var th_n_im = 0; // theta^0 |
|
var th_n_re1; |
|
var th_n_im1; |
|
|
|
var z_re = 0; |
|
var z_im = 0; |
|
for (n = 1; n <= 6; n++) { |
|
th_n_re1 = th_n_re * th_re - th_n_im * th_im; |
|
th_n_im1 = th_n_im * th_re + th_n_re * th_im; |
|
th_n_re = th_n_re1; |
|
th_n_im = th_n_im1; |
|
z_re = z_re + this.B_re[n] * th_n_re - this.B_im[n] * th_n_im; |
|
z_im = z_im + this.B_im[n] * th_n_re + this.B_re[n] * th_n_im; |
|
} |
|
|
|
// 4. Calculate easting and northing |
|
p.x = (z_im * this.a) + this.x0; |
|
p.y = (z_re * this.a) + this.y0; |
|
|
|
return p; |
|
} |
|
|
|
/** |
|
New Zealand Map Grid Inverse - x/y to long/lat |
|
*/ |
|
function inverse$18(p) { |
|
var n; |
|
var x = p.x; |
|
var y = p.y; |
|
|
|
var delta_x = x - this.x0; |
|
var delta_y = y - this.y0; |
|
|
|
// 1. Calculate z |
|
var z_re = delta_y / this.a; |
|
var z_im = delta_x / this.a; |
|
|
|
// 2a. Calculate theta - first approximation gives km accuracy |
|
var z_n_re = 1; |
|
var z_n_im = 0; // z^0 |
|
var z_n_re1; |
|
var z_n_im1; |
|
|
|
var th_re = 0; |
|
var th_im = 0; |
|
for (n = 1; n <= 6; n++) { |
|
z_n_re1 = z_n_re * z_re - z_n_im * z_im; |
|
z_n_im1 = z_n_im * z_re + z_n_re * z_im; |
|
z_n_re = z_n_re1; |
|
z_n_im = z_n_im1; |
|
th_re = th_re + this.C_re[n] * z_n_re - this.C_im[n] * z_n_im; |
|
th_im = th_im + this.C_im[n] * z_n_re + this.C_re[n] * z_n_im; |
|
} |
|
|
|
// 2b. Iterate to refine the accuracy of the calculation |
|
// 0 iterations gives km accuracy |
|
// 1 iteration gives m accuracy -- good enough for most mapping applications |
|
// 2 iterations bives mm accuracy |
|
for (var i = 0; i < this.iterations; i++) { |
|
var th_n_re = th_re; |
|
var th_n_im = th_im; |
|
var th_n_re1; |
|
var th_n_im1; |
|
|
|
var num_re = z_re; |
|
var num_im = z_im; |
|
for (n = 2; n <= 6; n++) { |
|
th_n_re1 = th_n_re * th_re - th_n_im * th_im; |
|
th_n_im1 = th_n_im * th_re + th_n_re * th_im; |
|
th_n_re = th_n_re1; |
|
th_n_im = th_n_im1; |
|
num_re = num_re + (n - 1) * (this.B_re[n] * th_n_re - this.B_im[n] * th_n_im); |
|
num_im = num_im + (n - 1) * (this.B_im[n] * th_n_re + this.B_re[n] * th_n_im); |
|
} |
|
|
|
th_n_re = 1; |
|
th_n_im = 0; |
|
var den_re = this.B_re[1]; |
|
var den_im = this.B_im[1]; |
|
for (n = 2; n <= 6; n++) { |
|
th_n_re1 = th_n_re * th_re - th_n_im * th_im; |
|
th_n_im1 = th_n_im * th_re + th_n_re * th_im; |
|
th_n_re = th_n_re1; |
|
th_n_im = th_n_im1; |
|
den_re = den_re + n * (this.B_re[n] * th_n_re - this.B_im[n] * th_n_im); |
|
den_im = den_im + n * (this.B_im[n] * th_n_re + this.B_re[n] * th_n_im); |
|
} |
|
|
|
// Complex division |
|
var den2 = den_re * den_re + den_im * den_im; |
|
th_re = (num_re * den_re + num_im * den_im) / den2; |
|
th_im = (num_im * den_re - num_re * den_im) / den2; |
|
} |
|
|
|
// 3. Calculate d_phi ... // and d_lambda |
|
var d_psi = th_re; |
|
var d_lambda = th_im; |
|
var d_psi_n = 1; // d_psi^0 |
|
|
|
var d_phi = 0; |
|
for (n = 1; n <= 9; n++) { |
|
d_psi_n = d_psi_n * d_psi; |
|
d_phi = d_phi + this.D[n] * d_psi_n; |
|
} |
|
|
|
// 4. Calculate latitude and longitude |
|
// d_phi is calcuated in second of arc * 10^-5, so we need to scale back to radians. d_lambda is in radians. |
|
var lat = this.lat0 + (d_phi * SEC_TO_RAD * 1E5); |
|
var lon = this.long0 + d_lambda; |
|
|
|
p.x = lon; |
|
p.y = lat; |
|
|
|
return p; |
|
} |
|
|
|
var names$20 = ["New_Zealand_Map_Grid", "nzmg"]; |
|
var nzmg = { |
|
init: init$19, |
|
forward: forward$18, |
|
inverse: inverse$18, |
|
names: names$20 |
|
}; |
|
|
|
/* |
|
reference |
|
"New Equal-Area Map Projections for Noncircular Regions", John P. Snyder, |
|
The American Cartographer, Vol 15, No. 4, October 1988, pp. 341-355. |
|
*/ |
|
|
|
|
|
/* Initialize the Miller Cylindrical projection |
|
-------------------------------------------*/ |
|
function init$20() { |
|
//no-op |
|
} |
|
|
|
/* Miller Cylindrical forward equations--mapping lat,long to x,y |
|
------------------------------------------------------------*/ |
|
function forward$19(p) { |
|
var lon = p.x; |
|
var lat = p.y; |
|
/* Forward equations |
|
-----------------*/ |
|
var dlon = adjust_lon(lon - this.long0); |
|
var x = this.x0 + this.a * dlon; |
|
var y = this.y0 + this.a * Math.log(Math.tan((Math.PI / 4) + (lat / 2.5))) * 1.25; |
|
|
|
p.x = x; |
|
p.y = y; |
|
return p; |
|
} |
|
|
|
/* Miller Cylindrical inverse equations--mapping x,y to lat/long |
|
------------------------------------------------------------*/ |
|
function inverse$19(p) { |
|
p.x -= this.x0; |
|
p.y -= this.y0; |
|
|
|
var lon = adjust_lon(this.long0 + p.x / this.a); |
|
var lat = 2.5 * (Math.atan(Math.exp(0.8 * p.y / this.a)) - Math.PI / 4); |
|
|
|
p.x = lon; |
|
p.y = lat; |
|
return p; |
|
} |
|
|
|
var names$21 = ["Miller_Cylindrical", "mill"]; |
|
var mill = { |
|
init: init$20, |
|
forward: forward$19, |
|
inverse: inverse$19, |
|
names: names$21 |
|
}; |
|
|
|
var MAX_ITER$3 = 20; |
|
function init$21() { |
|
/* Place parameters in static storage for common use |
|
-------------------------------------------------*/ |
|
|
|
|
|
if (!this.sphere) { |
|
this.en = pj_enfn(this.es); |
|
} |
|
else { |
|
this.n = 1; |
|
this.m = 0; |
|
this.es = 0; |
|
this.C_y = Math.sqrt((this.m + 1) / this.n); |
|
this.C_x = this.C_y / (this.m + 1); |
|
} |
|
|
|
} |
|
|
|
/* Sinusoidal forward equations--mapping lat,long to x,y |
|
-----------------------------------------------------*/ |
|
function forward$20(p) { |
|
var x, y; |
|
var lon = p.x; |
|
var lat = p.y; |
|
/* Forward equations |
|
-----------------*/ |
|
lon = adjust_lon(lon - this.long0); |
|
|
|
if (this.sphere) { |
|
if (!this.m) { |
|
lat = this.n !== 1 ? Math.asin(this.n * Math.sin(lat)) : lat; |
|
} |
|
else { |
|
var k = this.n * Math.sin(lat); |
|
for (var i = MAX_ITER$3; i; --i) { |
|
var V = (this.m * lat + Math.sin(lat) - k) / (this.m + Math.cos(lat)); |
|
lat -= V; |
|
if (Math.abs(V) < EPSLN) { |
|
break; |
|
} |
|
} |
|
} |
|
x = this.a * this.C_x * lon * (this.m + Math.cos(lat)); |
|
y = this.a * this.C_y * lat; |
|
|
|
} |
|
else { |
|
|
|
var s = Math.sin(lat); |
|
var c = Math.cos(lat); |
|
y = this.a * pj_mlfn(lat, s, c, this.en); |
|
x = this.a * lon * c / Math.sqrt(1 - this.es * s * s); |
|
} |
|
|
|
p.x = x; |
|
p.y = y; |
|
return p; |
|
} |
|
|
|
function inverse$20(p) { |
|
var lat, temp, lon, s; |
|
|
|
p.x -= this.x0; |
|
lon = p.x / this.a; |
|
p.y -= this.y0; |
|
lat = p.y / this.a; |
|
|
|
if (this.sphere) { |
|
lat /= this.C_y; |
|
lon = lon / (this.C_x * (this.m + Math.cos(lat))); |
|
if (this.m) { |
|
lat = asinz((this.m * lat + Math.sin(lat)) / this.n); |
|
} |
|
else if (this.n !== 1) { |
|
lat = asinz(Math.sin(lat) / this.n); |
|
} |
|
lon = adjust_lon(lon + this.long0); |
|
lat = adjust_lat(lat); |
|
} |
|
else { |
|
lat = pj_inv_mlfn(p.y / this.a, this.es, this.en); |
|
s = Math.abs(lat); |
|
if (s < HALF_PI) { |
|
s = Math.sin(lat); |
|
temp = this.long0 + p.x * Math.sqrt(1 - this.es * s * s) / (this.a * Math.cos(lat)); |
|
//temp = this.long0 + p.x / (this.a * Math.cos(lat)); |
|
lon = adjust_lon(temp); |
|
} |
|
else if ((s - EPSLN) < HALF_PI) { |
|
lon = this.long0; |
|
} |
|
} |
|
p.x = lon; |
|
p.y = lat; |
|
return p; |
|
} |
|
|
|
var names$22 = ["Sinusoidal", "sinu"]; |
|
var sinu = { |
|
init: init$21, |
|
forward: forward$20, |
|
inverse: inverse$20, |
|
names: names$22 |
|
}; |
|
|
|
function init$22() {} |
|
/* Mollweide forward equations--mapping lat,long to x,y |
|
----------------------------------------------------*/ |
|
function forward$21(p) { |
|
|
|
/* Forward equations |
|
-----------------*/ |
|
var lon = p.x; |
|
var lat = p.y; |
|
|
|
var delta_lon = adjust_lon(lon - this.long0); |
|
var theta = lat; |
|
var con = Math.PI * Math.sin(lat); |
|
|
|
/* Iterate using the Newton-Raphson method to find theta |
|
-----------------------------------------------------*/ |
|
while (true) { |
|
var delta_theta = -(theta + Math.sin(theta) - con) / (1 + Math.cos(theta)); |
|
theta += delta_theta; |
|
if (Math.abs(delta_theta) < EPSLN) { |
|
break; |
|
} |
|
} |
|
theta /= 2; |
|
|
|
/* If the latitude is 90 deg, force the x coordinate to be "0 + false easting" |
|
this is done here because of precision problems with "cos(theta)" |
|
--------------------------------------------------------------------------*/ |
|
if (Math.PI / 2 - Math.abs(lat) < EPSLN) { |
|
delta_lon = 0; |
|
} |
|
var x = 0.900316316158 * this.a * delta_lon * Math.cos(theta) + this.x0; |
|
var y = 1.4142135623731 * this.a * Math.sin(theta) + this.y0; |
|
|
|
p.x = x; |
|
p.y = y; |
|
return p; |
|
} |
|
|
|
function inverse$21(p) { |
|
var theta; |
|
var arg; |
|
|
|
/* Inverse equations |
|
-----------------*/ |
|
p.x -= this.x0; |
|
p.y -= this.y0; |
|
arg = p.y / (1.4142135623731 * this.a); |
|
|
|
/* Because of division by zero problems, 'arg' can not be 1. Therefore |
|
a number very close to one is used instead. |
|
-------------------------------------------------------------------*/ |
|
if (Math.abs(arg) > 0.999999999999) { |
|
arg = 0.999999999999; |
|
} |
|
theta = Math.asin(arg); |
|
var lon = adjust_lon(this.long0 + (p.x / (0.900316316158 * this.a * Math.cos(theta)))); |
|
if (lon < (-Math.PI)) { |
|
lon = -Math.PI; |
|
} |
|
if (lon > Math.PI) { |
|
lon = Math.PI; |
|
} |
|
arg = (2 * theta + Math.sin(2 * theta)) / Math.PI; |
|
if (Math.abs(arg) > 1) { |
|
arg = 1; |
|
} |
|
var lat = Math.asin(arg); |
|
|
|
p.x = lon; |
|
p.y = lat; |
|
return p; |
|
} |
|
|
|
var names$23 = ["Mollweide", "moll"]; |
|
var moll = { |
|
init: init$22, |
|
forward: forward$21, |
|
inverse: inverse$21, |
|
names: names$23 |
|
}; |
|
|
|
function init$23() { |
|
|
|
/* Place parameters in static storage for common use |
|
-------------------------------------------------*/ |
|
// Standard Parallels cannot be equal and on opposite sides of the equator |
|
if (Math.abs(this.lat1 + this.lat2) < EPSLN) { |
|
return; |
|
} |
|
this.lat2 = this.lat2 || this.lat1; |
|
this.temp = this.b / this.a; |
|
this.es = 1 - Math.pow(this.temp, 2); |
|
this.e = Math.sqrt(this.es); |
|
this.e0 = e0fn(this.es); |
|
this.e1 = e1fn(this.es); |
|
this.e2 = e2fn(this.es); |
|
this.e3 = e3fn(this.es); |
|
|
|
this.sinphi = Math.sin(this.lat1); |
|
this.cosphi = Math.cos(this.lat1); |
|
|
|
this.ms1 = msfnz(this.e, this.sinphi, this.cosphi); |
|
this.ml1 = mlfn(this.e0, this.e1, this.e2, this.e3, this.lat1); |
|
|
|
if (Math.abs(this.lat1 - this.lat2) < EPSLN) { |
|
this.ns = this.sinphi; |
|
} |
|
else { |
|
this.sinphi = Math.sin(this.lat2); |
|
this.cosphi = Math.cos(this.lat2); |
|
this.ms2 = msfnz(this.e, this.sinphi, this.cosphi); |
|
this.ml2 = mlfn(this.e0, this.e1, this.e2, this.e3, this.lat2); |
|
this.ns = (this.ms1 - this.ms2) / (this.ml2 - this.ml1); |
|
} |
|
this.g = this.ml1 + this.ms1 / this.ns; |
|
this.ml0 = mlfn(this.e0, this.e1, this.e2, this.e3, this.lat0); |
|
this.rh = this.a * (this.g - this.ml0); |
|
} |
|
|
|
/* Equidistant Conic forward equations--mapping lat,long to x,y |
|
-----------------------------------------------------------*/ |
|
function forward$22(p) { |
|
var lon = p.x; |
|
var lat = p.y; |
|
var rh1; |
|
|
|
/* Forward equations |
|
-----------------*/ |
|
if (this.sphere) { |
|
rh1 = this.a * (this.g - lat); |
|
} |
|
else { |
|
var ml = mlfn(this.e0, this.e1, this.e2, this.e3, lat); |
|
rh1 = this.a * (this.g - ml); |
|
} |
|
var theta = this.ns * adjust_lon(lon - this.long0); |
|
var x = this.x0 + rh1 * Math.sin(theta); |
|
var y = this.y0 + this.rh - rh1 * Math.cos(theta); |
|
p.x = x; |
|
p.y = y; |
|
return p; |
|
} |
|
|
|
/* Inverse equations |
|
-----------------*/ |
|
function inverse$22(p) { |
|
p.x -= this.x0; |
|
p.y = this.rh - p.y + this.y0; |
|
var con, rh1, lat, lon; |
|
if (this.ns >= 0) { |
|
rh1 = Math.sqrt(p.x * p.x + p.y * p.y); |
|
con = 1; |
|
} |
|
else { |
|
rh1 = -Math.sqrt(p.x * p.x + p.y * p.y); |
|
con = -1; |
|
} |
|
var theta = 0; |
|
if (rh1 !== 0) { |
|
theta = Math.atan2(con * p.x, con * p.y); |
|
} |
|
|
|
if (this.sphere) { |
|
lon = adjust_lon(this.long0 + theta / this.ns); |
|
lat = adjust_lat(this.g - rh1 / this.a); |
|
p.x = lon; |
|
p.y = lat; |
|
return p; |
|
} |
|
else { |
|
var ml = this.g - rh1 / this.a; |
|
lat = imlfn(ml, this.e0, this.e1, this.e2, this.e3); |
|
lon = adjust_lon(this.long0 + theta / this.ns); |
|
p.x = lon; |
|
p.y = lat; |
|
return p; |
|
} |
|
|
|
} |
|
|
|
var names$24 = ["Equidistant_Conic", "eqdc"]; |
|
var eqdc = { |
|
init: init$23, |
|
forward: forward$22, |
|
inverse: inverse$22, |
|
names: names$24 |
|
}; |
|
|
|
/* Initialize the Van Der Grinten projection |
|
----------------------------------------*/ |
|
function init$24() { |
|
//this.R = 6370997; //Radius of earth |
|
this.R = this.a; |
|
} |
|
|
|
function forward$23(p) { |
|
|
|
var lon = p.x; |
|
var lat = p.y; |
|
|
|
/* Forward equations |
|
-----------------*/ |
|
var dlon = adjust_lon(lon - this.long0); |
|
var x, y; |
|
|
|
if (Math.abs(lat) <= EPSLN) { |
|
x = this.x0 + this.R * dlon; |
|
y = this.y0; |
|
} |
|
var theta = asinz(2 * Math.abs(lat / Math.PI)); |
|
if ((Math.abs(dlon) <= EPSLN) || (Math.abs(Math.abs(lat) - HALF_PI) <= EPSLN)) { |
|
x = this.x0; |
|
if (lat >= 0) { |
|
y = this.y0 + Math.PI * this.R * Math.tan(0.5 * theta); |
|
} |
|
else { |
|
y = this.y0 + Math.PI * this.R * -Math.tan(0.5 * theta); |
|
} |
|
// return(OK); |
|
} |
|
var al = 0.5 * Math.abs((Math.PI / dlon) - (dlon / Math.PI)); |
|
var asq = al * al; |
|
var sinth = Math.sin(theta); |
|
var costh = Math.cos(theta); |
|
|
|
var g = costh / (sinth + costh - 1); |
|
var gsq = g * g; |
|
var m = g * (2 / sinth - 1); |
|
var msq = m * m; |
|
var con = Math.PI * this.R * (al * (g - msq) + Math.sqrt(asq * (g - msq) * (g - msq) - (msq + asq) * (gsq - msq))) / (msq + asq); |
|
if (dlon < 0) { |
|
con = -con; |
|
} |
|
x = this.x0 + con; |
|
//con = Math.abs(con / (Math.PI * this.R)); |
|
var q = asq + g; |
|
con = Math.PI * this.R * (m * q - al * Math.sqrt((msq + asq) * (asq + 1) - q * q)) / (msq + asq); |
|
if (lat >= 0) { |
|
//y = this.y0 + Math.PI * this.R * Math.sqrt(1 - con * con - 2 * al * con); |
|
y = this.y0 + con; |
|
} |
|
else { |
|
//y = this.y0 - Math.PI * this.R * Math.sqrt(1 - con * con - 2 * al * con); |
|
y = this.y0 - con; |
|
} |
|
p.x = x; |
|
p.y = y; |
|
return p; |
|
} |
|
|
|
/* Van Der Grinten inverse equations--mapping x,y to lat/long |
|
---------------------------------------------------------*/ |
|
function inverse$23(p) { |
|
var lon, lat; |
|
var xx, yy, xys, c1, c2, c3; |
|
var a1; |
|
var m1; |
|
var con; |
|
var th1; |
|
var d; |
|
|
|
/* inverse equations |
|
-----------------*/ |
|
p.x -= this.x0; |
|
p.y -= this.y0; |
|
con = Math.PI * this.R; |
|
xx = p.x / con; |
|
yy = p.y / con; |
|
xys = xx * xx + yy * yy; |
|
c1 = -Math.abs(yy) * (1 + xys); |
|
c2 = c1 - 2 * yy * yy + xx * xx; |
|
c3 = -2 * c1 + 1 + 2 * yy * yy + xys * xys; |
|
d = yy * yy / c3 + (2 * c2 * c2 * c2 / c3 / c3 / c3 - 9 * c1 * c2 / c3 / c3) / 27; |
|
a1 = (c1 - c2 * c2 / 3 / c3) / c3; |
|
m1 = 2 * Math.sqrt(-a1 / 3); |
|
con = ((3 * d) / a1) / m1; |
|
if (Math.abs(con) > 1) { |
|
if (con >= 0) { |
|
con = 1; |
|
} |
|
else { |
|
con = -1; |
|
} |
|
} |
|
th1 = Math.acos(con) / 3; |
|
if (p.y >= 0) { |
|
lat = (-m1 * Math.cos(th1 + Math.PI / 3) - c2 / 3 / c3) * Math.PI; |
|
} |
|
else { |
|
lat = -(-m1 * Math.cos(th1 + Math.PI / 3) - c2 / 3 / c3) * Math.PI; |
|
} |
|
|
|
if (Math.abs(xx) < EPSLN) { |
|
lon = this.long0; |
|
} |
|
else { |
|
lon = adjust_lon(this.long0 + Math.PI * (xys - 1 + Math.sqrt(1 + 2 * (xx * xx - yy * yy) + xys * xys)) / 2 / xx); |
|
} |
|
|
|
p.x = lon; |
|
p.y = lat; |
|
return p; |
|
} |
|
|
|
var names$25 = ["Van_der_Grinten_I", "VanDerGrinten", "vandg"]; |
|
var vandg = { |
|
init: init$24, |
|
forward: forward$23, |
|
inverse: inverse$23, |
|
names: names$25 |
|
}; |
|
|
|
function init$25() { |
|
this.sin_p12 = Math.sin(this.lat0); |
|
this.cos_p12 = Math.cos(this.lat0); |
|
} |
|
|
|
function forward$24(p) { |
|
var lon = p.x; |
|
var lat = p.y; |
|
var sinphi = Math.sin(p.y); |
|
var cosphi = Math.cos(p.y); |
|
var dlon = adjust_lon(lon - this.long0); |
|
var e0, e1, e2, e3, Mlp, Ml, tanphi, Nl1, Nl, psi, Az, G, H, GH, Hs, c, kp, cos_c, s, s2, s3, s4, s5; |
|
if (this.sphere) { |
|
if (Math.abs(this.sin_p12 - 1) <= EPSLN) { |
|
//North Pole case |
|
p.x = this.x0 + this.a * (HALF_PI - lat) * Math.sin(dlon); |
|
p.y = this.y0 - this.a * (HALF_PI - lat) * Math.cos(dlon); |
|
return p; |
|
} |
|
else if (Math.abs(this.sin_p12 + 1) <= EPSLN) { |
|
//South Pole case |
|
p.x = this.x0 + this.a * (HALF_PI + lat) * Math.sin(dlon); |
|
p.y = this.y0 + this.a * (HALF_PI + lat) * Math.cos(dlon); |
|
return p; |
|
} |
|
else { |
|
//default case |
|
cos_c = this.sin_p12 * sinphi + this.cos_p12 * cosphi * Math.cos(dlon); |
|
c = Math.acos(cos_c); |
|
kp = c / Math.sin(c); |
|
p.x = this.x0 + this.a * kp * cosphi * Math.sin(dlon); |
|
p.y = this.y0 + this.a * kp * (this.cos_p12 * sinphi - this.sin_p12 * cosphi * Math.cos(dlon)); |
|
return p; |
|
} |
|
} |
|
else { |
|
e0 = e0fn(this.es); |
|
e1 = e1fn(this.es); |
|
e2 = e2fn(this.es); |
|
e3 = e3fn(this.es); |
|
if (Math.abs(this.sin_p12 - 1) <= EPSLN) { |
|
//North Pole case |
|
Mlp = this.a * mlfn(e0, e1, e2, e3, HALF_PI); |
|
Ml = this.a * mlfn(e0, e1, e2, e3, lat); |
|
p.x = this.x0 + (Mlp - Ml) * Math.sin(dlon); |
|
p.y = this.y0 - (Mlp - Ml) * Math.cos(dlon); |
|
return p; |
|
} |
|
else if (Math.abs(this.sin_p12 + 1) <= EPSLN) { |
|
//South Pole case |
|
Mlp = this.a * mlfn(e0, e1, e2, e3, HALF_PI); |
|
Ml = this.a * mlfn(e0, e1, e2, e3, lat); |
|
p.x = this.x0 + (Mlp + Ml) * Math.sin(dlon); |
|
p.y = this.y0 + (Mlp + Ml) * Math.cos(dlon); |
|
return p; |
|
} |
|
else { |
|
//Default case |
|
tanphi = sinphi / cosphi; |
|
Nl1 = gN(this.a, this.e, this.sin_p12); |
|
Nl = gN(this.a, this.e, sinphi); |
|
psi = Math.atan((1 - this.es) * tanphi + this.es * Nl1 * this.sin_p12 / (Nl * cosphi)); |
|
Az = Math.atan2(Math.sin(dlon), this.cos_p12 * Math.tan(psi) - this.sin_p12 * Math.cos(dlon)); |
|
if (Az === 0) { |
|
s = Math.asin(this.cos_p12 * Math.sin(psi) - this.sin_p12 * Math.cos(psi)); |
|
} |
|
else if (Math.abs(Math.abs(Az) - Math.PI) <= EPSLN) { |
|
s = -Math.asin(this.cos_p12 * Math.sin(psi) - this.sin_p12 * Math.cos(psi)); |
|
} |
|
else { |
|
s = Math.asin(Math.sin(dlon) * Math.cos(psi) / Math.sin(Az)); |
|
} |
|
G = this.e * this.sin_p12 / Math.sqrt(1 - this.es); |
|
H = this.e * this.cos_p12 * Math.cos(Az) / Math.sqrt(1 - this.es); |
|
GH = G * H; |
|
Hs = H * H; |
|
s2 = s * s; |
|
s3 = s2 * s; |
|
s4 = s3 * s; |
|
s5 = s4 * s; |
|
c = Nl1 * s * (1 - s2 * Hs * (1 - Hs) / 6 + s3 / 8 * GH * (1 - 2 * Hs) + s4 / 120 * (Hs * (4 - 7 * Hs) - 3 * G * G * (1 - 7 * Hs)) - s5 / 48 * GH); |
|
p.x = this.x0 + c * Math.sin(Az); |
|
p.y = this.y0 + c * Math.cos(Az); |
|
return p; |
|
} |
|
} |
|
|
|
|
|
} |
|
|
|
function inverse$24(p) { |
|
p.x -= this.x0; |
|
p.y -= this.y0; |
|
var rh, z, sinz, cosz, lon, lat, con, e0, e1, e2, e3, Mlp, M, N1, psi, Az, cosAz, tmp, A, B, D, Ee, F; |
|
if (this.sphere) { |
|
rh = Math.sqrt(p.x * p.x + p.y * p.y); |
|
if (rh > (2 * HALF_PI * this.a)) { |
|
return; |
|
} |
|
z = rh / this.a; |
|
|
|
sinz = Math.sin(z); |
|
cosz = Math.cos(z); |
|
|
|
lon = this.long0; |
|
if (Math.abs(rh) <= EPSLN) { |
|
lat = this.lat0; |
|
} |
|
else { |
|
lat = asinz(cosz * this.sin_p12 + (p.y * sinz * this.cos_p12) / rh); |
|
con = Math.abs(this.lat0) - HALF_PI; |
|
if (Math.abs(con) <= EPSLN) { |
|
if (this.lat0 >= 0) { |
|
lon = adjust_lon(this.long0 + Math.atan2(p.x, - p.y)); |
|
} |
|
else { |
|
lon = adjust_lon(this.long0 - Math.atan2(-p.x, p.y)); |
|
} |
|
} |
|
else { |
|
/*con = cosz - this.sin_p12 * Math.sin(lat); |
|
if ((Math.abs(con) < EPSLN) && (Math.abs(p.x) < EPSLN)) { |
|
//no-op, just keep the lon value as is |
|
} else { |
|
var temp = Math.atan2((p.x * sinz * this.cos_p12), (con * rh)); |
|
lon = adjust_lon(this.long0 + Math.atan2((p.x * sinz * this.cos_p12), (con * rh))); |
|
}*/ |
|
lon = adjust_lon(this.long0 + Math.atan2(p.x * sinz, rh * this.cos_p12 * cosz - p.y * this.sin_p12 * sinz)); |
|
} |
|
} |
|
|
|
p.x = lon; |
|
p.y = lat; |
|
return p; |
|
} |
|
else { |
|
e0 = e0fn(this.es); |
|
e1 = e1fn(this.es); |
|
e2 = e2fn(this.es); |
|
e3 = e3fn(this.es); |
|
if (Math.abs(this.sin_p12 - 1) <= EPSLN) { |
|
//North pole case |
|
Mlp = this.a * mlfn(e0, e1, e2, e3, HALF_PI); |
|
rh = Math.sqrt(p.x * p.x + p.y * p.y); |
|
M = Mlp - rh; |
|
lat = imlfn(M / this.a, e0, e1, e2, e3); |
|
lon = adjust_lon(this.long0 + Math.atan2(p.x, - 1 * p.y)); |
|
p.x = lon; |
|
p.y = lat; |
|
return p; |
|
} |
|
else if (Math.abs(this.sin_p12 + 1) <= EPSLN) { |
|
//South pole case |
|
Mlp = this.a * mlfn(e0, e1, e2, e3, HALF_PI); |
|
rh = Math.sqrt(p.x * p.x + p.y * p.y); |
|
M = rh - Mlp; |
|
|
|
lat = imlfn(M / this.a, e0, e1, e2, e3); |
|
lon = adjust_lon(this.long0 + Math.atan2(p.x, p.y)); |
|
p.x = lon; |
|
p.y = lat; |
|
return p; |
|
} |
|
else { |
|
//default case |
|
rh = Math.sqrt(p.x * p.x + p.y * p.y); |
|
Az = Math.atan2(p.x, p.y); |
|
N1 = gN(this.a, this.e, this.sin_p12); |
|
cosAz = Math.cos(Az); |
|
tmp = this.e * this.cos_p12 * cosAz; |
|
A = -tmp * tmp / (1 - this.es); |
|
B = 3 * this.es * (1 - A) * this.sin_p12 * this.cos_p12 * cosAz / (1 - this.es); |
|
D = rh / N1; |
|
Ee = D - A * (1 + A) * Math.pow(D, 3) / 6 - B * (1 + 3 * A) * Math.pow(D, 4) / 24; |
|
F = 1 - A * Ee * Ee / 2 - D * Ee * Ee * Ee / 6; |
|
psi = Math.asin(this.sin_p12 * Math.cos(Ee) + this.cos_p12 * Math.sin(Ee) * cosAz); |
|
lon = adjust_lon(this.long0 + Math.asin(Math.sin(Az) * Math.sin(Ee) / Math.cos(psi))); |
|
lat = Math.atan((1 - this.es * F * this.sin_p12 / Math.sin(psi)) * Math.tan(psi) / (1 - this.es)); |
|
p.x = lon; |
|
p.y = lat; |
|
return p; |
|
} |
|
} |
|
|
|
} |
|
|
|
var names$26 = ["Azimuthal_Equidistant", "aeqd"]; |
|
var aeqd = { |
|
init: init$25, |
|
forward: forward$24, |
|
inverse: inverse$24, |
|
names: names$26 |
|
}; |
|
|
|
function init$26() { |
|
//double temp; /* temporary variable */ |
|
|
|
/* Place parameters in static storage for common use |
|
-------------------------------------------------*/ |
|
this.sin_p14 = Math.sin(this.lat0); |
|
this.cos_p14 = Math.cos(this.lat0); |
|
} |
|
|
|
/* Orthographic forward equations--mapping lat,long to x,y |
|
---------------------------------------------------*/ |
|
function forward$25(p) { |
|
var sinphi, cosphi; /* sin and cos value */ |
|
var dlon; /* delta longitude value */ |
|
var coslon; /* cos of longitude */ |
|
var ksp; /* scale factor */ |
|
var g, x, y; |
|
var lon = p.x; |
|
var lat = p.y; |
|
/* Forward equations |
|
-----------------*/ |
|
dlon = adjust_lon(lon - this.long0); |
|
|
|
sinphi = Math.sin(lat); |
|
cosphi = Math.cos(lat); |
|
|
|
coslon = Math.cos(dlon); |
|
g = this.sin_p14 * sinphi + this.cos_p14 * cosphi * coslon; |
|
ksp = 1; |
|
if ((g > 0) || (Math.abs(g) <= EPSLN)) { |
|
x = this.a * ksp * cosphi * Math.sin(dlon); |
|
y = this.y0 + this.a * ksp * (this.cos_p14 * sinphi - this.sin_p14 * cosphi * coslon); |
|
} |
|
p.x = x; |
|
p.y = y; |
|
return p; |
|
} |
|
|
|
function inverse$25(p) { |
|
var rh; /* height above ellipsoid */ |
|
var z; /* angle */ |
|
var sinz, cosz; /* sin of z and cos of z */ |
|
var con; |
|
var lon, lat; |
|
/* Inverse equations |
|
-----------------*/ |
|
p.x -= this.x0; |
|
p.y -= this.y0; |
|
rh = Math.sqrt(p.x * p.x + p.y * p.y); |
|
z = asinz(rh / this.a); |
|
|
|
sinz = Math.sin(z); |
|
cosz = Math.cos(z); |
|
|
|
lon = this.long0; |
|
if (Math.abs(rh) <= EPSLN) { |
|
lat = this.lat0; |
|
p.x = lon; |
|
p.y = lat; |
|
return p; |
|
} |
|
lat = asinz(cosz * this.sin_p14 + (p.y * sinz * this.cos_p14) / rh); |
|
con = Math.abs(this.lat0) - HALF_PI; |
|
if (Math.abs(con) <= EPSLN) { |
|
if (this.lat0 >= 0) { |
|
lon = adjust_lon(this.long0 + Math.atan2(p.x, - p.y)); |
|
} |
|
else { |
|
lon = adjust_lon(this.long0 - Math.atan2(-p.x, p.y)); |
|
} |
|
p.x = lon; |
|
p.y = lat; |
|
return p; |
|
} |
|
lon = adjust_lon(this.long0 + Math.atan2((p.x * sinz), rh * this.cos_p14 * cosz - p.y * this.sin_p14 * sinz)); |
|
p.x = lon; |
|
p.y = lat; |
|
return p; |
|
} |
|
|
|
var names$27 = ["ortho"]; |
|
var ortho = { |
|
init: init$26, |
|
forward: forward$25, |
|
inverse: inverse$25, |
|
names: names$27 |
|
}; |
|
|
|
// QSC projection rewritten from the original PROJ4 |
|
// https://github.com/OSGeo/proj.4/blob/master/src/PJ_qsc.c |
|
|
|
/* constants */ |
|
var FACE_ENUM = { |
|
FRONT: 1, |
|
RIGHT: 2, |
|
BACK: 3, |
|
LEFT: 4, |
|
TOP: 5, |
|
BOTTOM: 6 |
|
}; |
|
|
|
var AREA_ENUM = { |
|
AREA_0: 1, |
|
AREA_1: 2, |
|
AREA_2: 3, |
|
AREA_3: 4 |
|
}; |
|
|
|
function init$27() { |
|
|
|
this.x0 = this.x0 || 0; |
|
this.y0 = this.y0 || 0; |
|
this.lat0 = this.lat0 || 0; |
|
this.long0 = this.long0 || 0; |
|
this.lat_ts = this.lat_ts || 0; |
|
this.title = this.title || "Quadrilateralized Spherical Cube"; |
|
|
|
/* Determine the cube face from the center of projection. */ |
|
if (this.lat0 >= HALF_PI - FORTPI / 2.0) { |
|
this.face = FACE_ENUM.TOP; |
|
} else if (this.lat0 <= -(HALF_PI - FORTPI / 2.0)) { |
|
this.face = FACE_ENUM.BOTTOM; |
|
} else if (Math.abs(this.long0) <= FORTPI) { |
|
this.face = FACE_ENUM.FRONT; |
|
} else if (Math.abs(this.long0) <= HALF_PI + FORTPI) { |
|
this.face = this.long0 > 0.0 ? FACE_ENUM.RIGHT : FACE_ENUM.LEFT; |
|
} else { |
|
this.face = FACE_ENUM.BACK; |
|
} |
|
|
|
/* Fill in useful values for the ellipsoid <-> sphere shift |
|
* described in [LK12]. */ |
|
if (this.es !== 0) { |
|
this.one_minus_f = 1 - (this.a - this.b) / this.a; |
|
this.one_minus_f_squared = this.one_minus_f * this.one_minus_f; |
|
} |
|
} |
|
|
|
// QSC forward equations--mapping lat,long to x,y |
|
// ----------------------------------------------------------------- |
|
function forward$26(p) { |
|
var xy = {x: 0, y: 0}; |
|
var lat, lon; |
|
var theta, phi; |
|
var t, mu; |
|
/* nu; */ |
|
var area = {value: 0}; |
|
|
|
// move lon according to projection's lon |
|
p.x -= this.long0; |
|
|
|
/* Convert the geodetic latitude to a geocentric latitude. |
|
* This corresponds to the shift from the ellipsoid to the sphere |
|
* described in [LK12]. */ |
|
if (this.es !== 0) {//if (P->es != 0) { |
|
lat = Math.atan(this.one_minus_f_squared * Math.tan(p.y)); |
|
} else { |
|
lat = p.y; |
|
} |
|
|
|
/* Convert the input lat, lon into theta, phi as used by QSC. |
|
* This depends on the cube face and the area on it. |
|
* For the top and bottom face, we can compute theta and phi |
|
* directly from phi, lam. For the other faces, we must use |
|
* unit sphere cartesian coordinates as an intermediate step. */ |
|
lon = p.x; //lon = lp.lam; |
|
if (this.face === FACE_ENUM.TOP) { |
|
phi = HALF_PI - lat; |
|
if (lon >= FORTPI && lon <= HALF_PI + FORTPI) { |
|
area.value = AREA_ENUM.AREA_0; |
|
theta = lon - HALF_PI; |
|
} else if (lon > HALF_PI + FORTPI || lon <= -(HALF_PI + FORTPI)) { |
|
area.value = AREA_ENUM.AREA_1; |
|
theta = (lon > 0.0 ? lon - SPI : lon + SPI); |
|
} else if (lon > -(HALF_PI + FORTPI) && lon <= -FORTPI) { |
|
area.value = AREA_ENUM.AREA_2; |
|
theta = lon + HALF_PI; |
|
} else { |
|
area.value = AREA_ENUM.AREA_3; |
|
theta = lon; |
|
} |
|
} else if (this.face === FACE_ENUM.BOTTOM) { |
|
phi = HALF_PI + lat; |
|
if (lon >= FORTPI && lon <= HALF_PI + FORTPI) { |
|
area.value = AREA_ENUM.AREA_0; |
|
theta = -lon + HALF_PI; |
|
} else if (lon < FORTPI && lon >= -FORTPI) { |
|
area.value = AREA_ENUM.AREA_1; |
|
theta = -lon; |
|
} else if (lon < -FORTPI && lon >= -(HALF_PI + FORTPI)) { |
|
area.value = AREA_ENUM.AREA_2; |
|
theta = -lon - HALF_PI; |
|
} else { |
|
area.value = AREA_ENUM.AREA_3; |
|
theta = (lon > 0.0 ? -lon + SPI : -lon - SPI); |
|
} |
|
} else { |
|
var q, r, s; |
|
var sinlat, coslat; |
|
var sinlon, coslon; |
|
|
|
if (this.face === FACE_ENUM.RIGHT) { |
|
lon = qsc_shift_lon_origin(lon, +HALF_PI); |
|
} else if (this.face === FACE_ENUM.BACK) { |
|
lon = qsc_shift_lon_origin(lon, +SPI); |
|
} else if (this.face === FACE_ENUM.LEFT) { |
|
lon = qsc_shift_lon_origin(lon, -HALF_PI); |
|
} |
|
sinlat = Math.sin(lat); |
|
coslat = Math.cos(lat); |
|
sinlon = Math.sin(lon); |
|
coslon = Math.cos(lon); |
|
q = coslat * coslon; |
|
r = coslat * sinlon; |
|
s = sinlat; |
|
|
|
if (this.face === FACE_ENUM.FRONT) { |
|
phi = Math.acos(q); |
|
theta = qsc_fwd_equat_face_theta(phi, s, r, area); |
|
} else if (this.face === FACE_ENUM.RIGHT) { |
|
phi = Math.acos(r); |
|
theta = qsc_fwd_equat_face_theta(phi, s, -q, area); |
|
} else if (this.face === FACE_ENUM.BACK) { |
|
phi = Math.acos(-q); |
|
theta = qsc_fwd_equat_face_theta(phi, s, -r, area); |
|
} else if (this.face === FACE_ENUM.LEFT) { |
|
phi = Math.acos(-r); |
|
theta = qsc_fwd_equat_face_theta(phi, s, q, area); |
|
} else { |
|
/* Impossible */ |
|
phi = theta = 0; |
|
area.value = AREA_ENUM.AREA_0; |
|
} |
|
} |
|
|
|
/* Compute mu and nu for the area of definition. |
|
* For mu, see Eq. (3-21) in [OL76], but note the typos: |
|
* compare with Eq. (3-14). For nu, see Eq. (3-38). */ |
|
mu = Math.atan((12 / SPI) * (theta + Math.acos(Math.sin(theta) * Math.cos(FORTPI)) - HALF_PI)); |
|
t = Math.sqrt((1 - Math.cos(phi)) / (Math.cos(mu) * Math.cos(mu)) / (1 - Math.cos(Math.atan(1 / Math.cos(theta))))); |
|
|
|
/* Apply the result to the real area. */ |
|
if (area.value === AREA_ENUM.AREA_1) { |
|
mu += HALF_PI; |
|
} else if (area.value === AREA_ENUM.AREA_2) { |
|
mu += SPI; |
|
} else if (area.value === AREA_ENUM.AREA_3) { |
|
mu += 1.5 * SPI; |
|
} |
|
|
|
/* Now compute x, y from mu and nu */ |
|
xy.x = t * Math.cos(mu); |
|
xy.y = t * Math.sin(mu); |
|
xy.x = xy.x * this.a + this.x0; |
|
xy.y = xy.y * this.a + this.y0; |
|
|
|
p.x = xy.x; |
|
p.y = xy.y; |
|
return p; |
|
} |
|
|
|
// QSC inverse equations--mapping x,y to lat/long |
|
// ----------------------------------------------------------------- |
|
function inverse$26(p) { |
|
var lp = {lam: 0, phi: 0}; |
|
var mu, nu, cosmu, tannu; |
|
var tantheta, theta, cosphi, phi; |
|
var t; |
|
var area = {value: 0}; |
|
|
|
/* de-offset */ |
|
p.x = (p.x - this.x0) / this.a; |
|
p.y = (p.y - this.y0) / this.a; |
|
|
|
/* Convert the input x, y to the mu and nu angles as used by QSC. |
|
* This depends on the area of the cube face. */ |
|
nu = Math.atan(Math.sqrt(p.x * p.x + p.y * p.y)); |
|
mu = Math.atan2(p.y, p.x); |
|
if (p.x >= 0.0 && p.x >= Math.abs(p.y)) { |
|
area.value = AREA_ENUM.AREA_0; |
|
} else if (p.y >= 0.0 && p.y >= Math.abs(p.x)) { |
|
area.value = AREA_ENUM.AREA_1; |
|
mu -= HALF_PI; |
|
} else if (p.x < 0.0 && -p.x >= Math.abs(p.y)) { |
|
area.value = AREA_ENUM.AREA_2; |
|
mu = (mu < 0.0 ? mu + SPI : mu - SPI); |
|
} else { |
|
area.value = AREA_ENUM.AREA_3; |
|
mu += HALF_PI; |
|
} |
|
|
|
/* Compute phi and theta for the area of definition. |
|
* The inverse projection is not described in the original paper, but some |
|
* good hints can be found here (as of 2011-12-14): |
|
* http://fits.gsfc.nasa.gov/fitsbits/saf.93/saf.9302 |
|
* (search for "Message-Id: <9302181759.AA25477 at fits.cv.nrao.edu>") */ |
|
t = (SPI / 12) * Math.tan(mu); |
|
tantheta = Math.sin(t) / (Math.cos(t) - (1 / Math.sqrt(2))); |
|
theta = Math.atan(tantheta); |
|
cosmu = Math.cos(mu); |
|
tannu = Math.tan(nu); |
|
cosphi = 1 - cosmu * cosmu * tannu * tannu * (1 - Math.cos(Math.atan(1 / Math.cos(theta)))); |
|
if (cosphi < -1) { |
|
cosphi = -1; |
|
} else if (cosphi > +1) { |
|
cosphi = +1; |
|
} |
|
|
|
/* Apply the result to the real area on the cube face. |
|
* For the top and bottom face, we can compute phi and lam directly. |
|
* For the other faces, we must use unit sphere cartesian coordinates |
|
* as an intermediate step. */ |
|
if (this.face === FACE_ENUM.TOP) { |
|
phi = Math.acos(cosphi); |
|
lp.phi = HALF_PI - phi; |
|
if (area.value === AREA_ENUM.AREA_0) { |
|
lp.lam = theta + HALF_PI; |
|
} else if (area.value === AREA_ENUM.AREA_1) { |
|
lp.lam = (theta < 0.0 ? theta + SPI : theta - SPI); |
|
} else if (area.value === AREA_ENUM.AREA_2) { |
|
lp.lam = theta - HALF_PI; |
|
} else /* area.value == AREA_ENUM.AREA_3 */ { |
|
lp.lam = theta; |
|
} |
|
} else if (this.face === FACE_ENUM.BOTTOM) { |
|
phi = Math.acos(cosphi); |
|
lp.phi = phi - HALF_PI; |
|
if (area.value === AREA_ENUM.AREA_0) { |
|
lp.lam = -theta + HALF_PI; |
|
} else if (area.value === AREA_ENUM.AREA_1) { |
|
lp.lam = -theta; |
|
} else if (area.value === AREA_ENUM.AREA_2) { |
|
lp.lam = -theta - HALF_PI; |
|
} else /* area.value == AREA_ENUM.AREA_3 */ { |
|
lp.lam = (theta < 0.0 ? -theta - SPI : -theta + SPI); |
|
} |
|
} else { |
|
/* Compute phi and lam via cartesian unit sphere coordinates. */ |
|
var q, r, s; |
|
q = cosphi; |
|
t = q * q; |
|
if (t >= 1) { |
|
s = 0; |
|
} else { |
|
s = Math.sqrt(1 - t) * Math.sin(theta); |
|
} |
|
t += s * s; |
|
if (t >= 1) { |
|
r = 0; |
|
} else { |
|
r = Math.sqrt(1 - t); |
|
} |
|
/* Rotate q,r,s into the correct area. */ |
|
if (area.value === AREA_ENUM.AREA_1) { |
|
t = r; |
|
r = -s; |
|
s = t; |
|
} else if (area.value === AREA_ENUM.AREA_2) { |
|
r = -r; |
|
s = -s; |
|
} else if (area.value === AREA_ENUM.AREA_3) { |
|
t = r; |
|
r = s; |
|
s = -t; |
|
} |
|
/* Rotate q,r,s into the correct cube face. */ |
|
if (this.face === FACE_ENUM.RIGHT) { |
|
t = q; |
|
q = -r; |
|
r = t; |
|
} else if (this.face === FACE_ENUM.BACK) { |
|
q = -q; |
|
r = -r; |
|
} else if (this.face === FACE_ENUM.LEFT) { |
|
t = q; |
|
q = r; |
|
r = -t; |
|
} |
|
/* Now compute phi and lam from the unit sphere coordinates. */ |
|
lp.phi = Math.acos(-s) - HALF_PI; |
|
lp.lam = Math.atan2(r, q); |
|
if (this.face === FACE_ENUM.RIGHT) { |
|
lp.lam = qsc_shift_lon_origin(lp.lam, -HALF_PI); |
|
} else if (this.face === FACE_ENUM.BACK) { |
|
lp.lam = qsc_shift_lon_origin(lp.lam, -SPI); |
|
} else if (this.face === FACE_ENUM.LEFT) { |
|
lp.lam = qsc_shift_lon_origin(lp.lam, +HALF_PI); |
|
} |
|
} |
|
|
|
/* Apply the shift from the sphere to the ellipsoid as described |
|
* in [LK12]. */ |
|
if (this.es !== 0) { |
|
var invert_sign; |
|
var tanphi, xa; |
|
invert_sign = (lp.phi < 0 ? 1 : 0); |
|
tanphi = Math.tan(lp.phi); |
|
xa = this.b / Math.sqrt(tanphi * tanphi + this.one_minus_f_squared); |
|
lp.phi = Math.atan(Math.sqrt(this.a * this.a - xa * xa) / (this.one_minus_f * xa)); |
|
if (invert_sign) { |
|
lp.phi = -lp.phi; |
|
} |
|
} |
|
|
|
lp.lam += this.long0; |
|
p.x = lp.lam; |
|
p.y = lp.phi; |
|
return p; |
|
} |
|
|
|
/* Helper function for forward projection: compute the theta angle |
|
* and determine the area number. */ |
|
function qsc_fwd_equat_face_theta(phi, y, x, area) { |
|
var theta; |
|
if (phi < EPSLN) { |
|
area.value = AREA_ENUM.AREA_0; |
|
theta = 0.0; |
|
} else { |
|
theta = Math.atan2(y, x); |
|
if (Math.abs(theta) <= FORTPI) { |
|
area.value = AREA_ENUM.AREA_0; |
|
} else if (theta > FORTPI && theta <= HALF_PI + FORTPI) { |
|
area.value = AREA_ENUM.AREA_1; |
|
theta -= HALF_PI; |
|
} else if (theta > HALF_PI + FORTPI || theta <= -(HALF_PI + FORTPI)) { |
|
area.value = AREA_ENUM.AREA_2; |
|
theta = (theta >= 0.0 ? theta - SPI : theta + SPI); |
|
} else { |
|
area.value = AREA_ENUM.AREA_3; |
|
theta += HALF_PI; |
|
} |
|
} |
|
return theta; |
|
} |
|
|
|
/* Helper function: shift the longitude. */ |
|
function qsc_shift_lon_origin(lon, offset) { |
|
var slon = lon + offset; |
|
if (slon < -SPI) { |
|
slon += TWO_PI; |
|
} else if (slon > +SPI) { |
|
slon -= TWO_PI; |
|
} |
|
return slon; |
|
} |
|
|
|
var names$28 = ["Quadrilateralized Spherical Cube", "Quadrilateralized_Spherical_Cube", "qsc"]; |
|
var qsc = { |
|
init: init$27, |
|
forward: forward$26, |
|
inverse: inverse$26, |
|
names: names$28 |
|
}; |
|
|
|
// Robinson projection |
|
// Based on https://github.com/OSGeo/proj.4/blob/master/src/PJ_robin.c |
|
// Polynomial coeficients from http://article.gmane.org/gmane.comp.gis.proj-4.devel/6039 |
|
|
|
var COEFS_X = [ |
|
[1.0000, 2.2199e-17, -7.15515e-05, 3.1103e-06], |
|
[0.9986, -0.000482243, -2.4897e-05, -1.3309e-06], |
|
[0.9954, -0.00083103, -4.48605e-05, -9.86701e-07], |
|
[0.9900, -0.00135364, -5.9661e-05, 3.6777e-06], |
|
[0.9822, -0.00167442, -4.49547e-06, -5.72411e-06], |
|
[0.9730, -0.00214868, -9.03571e-05, 1.8736e-08], |
|
[0.9600, -0.00305085, -9.00761e-05, 1.64917e-06], |
|
[0.9427, -0.00382792, -6.53386e-05, -2.6154e-06], |
|
[0.9216, -0.00467746, -0.00010457, 4.81243e-06], |
|
[0.8962, -0.00536223, -3.23831e-05, -5.43432e-06], |
|
[0.8679, -0.00609363, -0.000113898, 3.32484e-06], |
|
[0.8350, -0.00698325, -6.40253e-05, 9.34959e-07], |
|
[0.7986, -0.00755338, -5.00009e-05, 9.35324e-07], |
|
[0.7597, -0.00798324, -3.5971e-05, -2.27626e-06], |
|
[0.7186, -0.00851367, -7.01149e-05, -8.6303e-06], |
|
[0.6732, -0.00986209, -0.000199569, 1.91974e-05], |
|
[0.6213, -0.010418, 8.83923e-05, 6.24051e-06], |
|
[0.5722, -0.00906601, 0.000182, 6.24051e-06], |
|
[0.5322, -0.00677797, 0.000275608, 6.24051e-06] |
|
]; |
|
|
|
var COEFS_Y = [ |
|
[-5.20417e-18, 0.0124, 1.21431e-18, -8.45284e-11], |
|
[0.0620, 0.0124, -1.26793e-09, 4.22642e-10], |
|
[0.1240, 0.0124, 5.07171e-09, -1.60604e-09], |
|
[0.1860, 0.0123999, -1.90189e-08, 6.00152e-09], |
|
[0.2480, 0.0124002, 7.10039e-08, -2.24e-08], |
|
[0.3100, 0.0123992, -2.64997e-07, 8.35986e-08], |
|
[0.3720, 0.0124029, 9.88983e-07, -3.11994e-07], |
|
[0.4340, 0.0123893, -3.69093e-06, -4.35621e-07], |
|
[0.4958, 0.0123198, -1.02252e-05, -3.45523e-07], |
|
[0.5571, 0.0121916, -1.54081e-05, -5.82288e-07], |
|
[0.6176, 0.0119938, -2.41424e-05, -5.25327e-07], |
|
[0.6769, 0.011713, -3.20223e-05, -5.16405e-07], |
|
[0.7346, 0.0113541, -3.97684e-05, -6.09052e-07], |
|
[0.7903, 0.0109107, -4.89042e-05, -1.04739e-06], |
|
[0.8435, 0.0103431, -6.4615e-05, -1.40374e-09], |
|
[0.8936, 0.00969686, -6.4636e-05, -8.547e-06], |
|
[0.9394, 0.00840947, -0.000192841, -4.2106e-06], |
|
[0.9761, 0.00616527, -0.000256, -4.2106e-06], |
|
[1.0000, 0.00328947, -0.000319159, -4.2106e-06] |
|
]; |
|
|
|
var FXC = 0.8487; |
|
var FYC = 1.3523; |
|
var C1 = R2D/5; // rad to 5-degree interval |
|
var RC1 = 1/C1; |
|
var NODES = 18; |
|
|
|
var poly3_val = function(coefs, x) { |
|
return coefs[0] + x * (coefs[1] + x * (coefs[2] + x * coefs[3])); |
|
}; |
|
|
|
var poly3_der = function(coefs, x) { |
|
return coefs[1] + x * (2 * coefs[2] + x * 3 * coefs[3]); |
|
}; |
|
|
|
function newton_rapshon(f_df, start, max_err, iters) { |
|
var x = start; |
|
for (; iters; --iters) { |
|
var upd = f_df(x); |
|
x -= upd; |
|
if (Math.abs(upd) < max_err) { |
|
break; |
|
} |
|
} |
|
return x; |
|
} |
|
|
|
function init$28() { |
|
this.x0 = this.x0 || 0; |
|
this.y0 = this.y0 || 0; |
|
this.long0 = this.long0 || 0; |
|
this.es = 0; |
|
this.title = this.title || "Robinson"; |
|
} |
|
|
|
function forward$27(ll) { |
|
var lon = adjust_lon(ll.x - this.long0); |
|
|
|
var dphi = Math.abs(ll.y); |
|
var i = Math.floor(dphi * C1); |
|
if (i < 0) { |
|
i = 0; |
|
} else if (i >= NODES) { |
|
i = NODES - 1; |
|
} |
|
dphi = R2D * (dphi - RC1 * i); |
|
var xy = { |
|
x: poly3_val(COEFS_X[i], dphi) * lon, |
|
y: poly3_val(COEFS_Y[i], dphi) |
|
}; |
|
if (ll.y < 0) { |
|
xy.y = -xy.y; |
|
} |
|
|
|
xy.x = xy.x * this.a * FXC + this.x0; |
|
xy.y = xy.y * this.a * FYC + this.y0; |
|
return xy; |
|
} |
|
|
|
function inverse$27(xy) { |
|
var ll = { |
|
x: (xy.x - this.x0) / (this.a * FXC), |
|
y: Math.abs(xy.y - this.y0) / (this.a * FYC) |
|
}; |
|
|
|
if (ll.y >= 1) { // pathologic case |
|
ll.x /= COEFS_X[NODES][0]; |
|
ll.y = xy.y < 0 ? -HALF_PI : HALF_PI; |
|
} else { |
|
// find table interval |
|
var i = Math.floor(ll.y * NODES); |
|
if (i < 0) { |
|
i = 0; |
|
} else if (i >= NODES) { |
|
i = NODES - 1; |
|
} |
|
for (;;) { |
|
if (COEFS_Y[i][0] > ll.y) { |
|
--i; |
|
} else if (COEFS_Y[i+1][0] <= ll.y) { |
|
++i; |
|
} else { |
|
break; |
|
} |
|
} |
|
// linear interpolation in 5 degree interval |
|
var coefs = COEFS_Y[i]; |
|
var t = 5 * (ll.y - coefs[0]) / (COEFS_Y[i+1][0] - coefs[0]); |
|
// find t so that poly3_val(coefs, t) = ll.y |
|
t = newton_rapshon(function(x) { |
|
return (poly3_val(coefs, x) - ll.y) / poly3_der(coefs, x); |
|
}, t, EPSLN, 100); |
|
|
|
ll.x /= poly3_val(COEFS_X[i], t); |
|
ll.y = (5 * i + t) * D2R; |
|
if (xy.y < 0) { |
|
ll.y = -ll.y; |
|
} |
|
} |
|
|
|
ll.x = adjust_lon(ll.x + this.long0); |
|
return ll; |
|
} |
|
|
|
var names$29 = ["Robinson", "robin"]; |
|
var robin = { |
|
init: init$28, |
|
forward: forward$27, |
|
inverse: inverse$27, |
|
names: names$29 |
|
}; |
|
|
|
function init$29() { |
|
this.name = 'geocent'; |
|
|
|
} |
|
|
|
function forward$28(p) { |
|
var point = geodeticToGeocentric(p, this.es, this.a); |
|
return point; |
|
} |
|
|
|
function inverse$28(p) { |
|
var point = geocentricToGeodetic(p, this.es, this.a, this.b); |
|
return point; |
|
} |
|
|
|
var names$30 = ["Geocentric", 'geocentric', "geocent", "Geocent"]; |
|
var geocent = { |
|
init: init$29, |
|
forward: forward$28, |
|
inverse: inverse$28, |
|
names: names$30 |
|
}; |
|
|
|
var includedProjections = function(proj4){ |
|
proj4.Proj.projections.add(tmerc); |
|
proj4.Proj.projections.add(etmerc); |
|
proj4.Proj.projections.add(utm); |
|
proj4.Proj.projections.add(sterea); |
|
proj4.Proj.projections.add(stere); |
|
proj4.Proj.projections.add(somerc); |
|
proj4.Proj.projections.add(omerc); |
|
proj4.Proj.projections.add(lcc); |
|
proj4.Proj.projections.add(krovak); |
|
proj4.Proj.projections.add(cass); |
|
proj4.Proj.projections.add(laea); |
|
proj4.Proj.projections.add(aea); |
|
proj4.Proj.projections.add(gnom); |
|
proj4.Proj.projections.add(cea); |
|
proj4.Proj.projections.add(eqc); |
|
proj4.Proj.projections.add(poly); |
|
proj4.Proj.projections.add(nzmg); |
|
proj4.Proj.projections.add(mill); |
|
proj4.Proj.projections.add(sinu); |
|
proj4.Proj.projections.add(moll); |
|
proj4.Proj.projections.add(eqdc); |
|
proj4.Proj.projections.add(vandg); |
|
proj4.Proj.projections.add(aeqd); |
|
proj4.Proj.projections.add(ortho); |
|
proj4.Proj.projections.add(qsc); |
|
proj4.Proj.projections.add(robin); |
|
proj4.Proj.projections.add(geocent); |
|
}; |
|
|
|
proj4$1.defaultDatum = 'WGS84'; //default datum |
|
proj4$1.Proj = Projection; |
|
proj4$1.WGS84 = new proj4$1.Proj('WGS84'); |
|
proj4$1.Point = Point; |
|
proj4$1.toPoint = toPoint; |
|
proj4$1.defs = defs; |
|
proj4$1.transform = transform; |
|
proj4$1.mgrs = mgrs; |
|
proj4$1.version = '2.6.0'; |
|
includedProjections(proj4$1); |
|
|
|
return proj4$1; |
|
|
|
})));
|
|
|